The Impact of Different Teaching Approaches and Languages on

Student Learning of Introductory Programming Concepts

A Thesis
Submitted to the Faculty
of
Drexel University
by
Wanda M. Kunkle
in partial fulfillment of the
requirements for the degree
of
Doctor of Philosophy

September 2010

UMI Number: 3430595

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMIO
Dissertation Publishing

UMI 3430595
Copyright 2010 by ProQuest LLC.
All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Q?@ Office of Graduate Studies
Drexel| Pissertation/Thesis Approval Form

This form is for use by all doctoral and master’s students with a dissertation/thesis requirement.
Please print clearly as the library will bind a copy of this form with each copy of the
dissertation/thesis. All doctoral dissertations must conform to university format requirements,
which is the responsibility of the student and supervising professor. Students should obtain a copy
of the Thesis Manual located on the library website.

Thechpect” »;U)J' Tie

Dissertation/Thesis Title:

Author:

This dissertation/thesis is hereby accepted and approved.

Signatures:

Examining Committee

p A',?lﬂw:.dm

(DAVSA M. keuni e

Chair Wav.
Members W t g‘f—f_’—
-A‘ib /.
w{fﬂ CN“H/T)
C M choed L ﬂ twoo cll
(4
Academic Advisor Mﬁ 7)'4%—\

Department Head AJM}—W\-/ WM[JZ,{« M

Office of Graduale Studies » 314! Chestnut Sreer » Randell Hall 240 » Pbiledeiphia, PA 19104
Te): 2)5-895-0366 » Fax: 2)5-895-0495 + Emall: edu * Web: www.drexel,

mailto:giadualc@drcxel.edu
http://www.drcxcl.edu/pTOvost/graduBtcsniilin

Copyright 2010
Wanda M. Kunkle. All Rights Reserved.

ii

DEDICATIONS

I dedicate this dissertation to the memory of
Nathan J. Kunkle
the loving father who encouraged me to become the person I was meant to be
and

the highly respected educator who inspired me to follow in his footsteps.

Nathan J. Kunkle (1907 — 1965)

ACKNOWLEDGEMENTS

I wish to thank my advisor, Robert Allen, and the members of my dissertation
committee for their support and guidance in doing the research and writing required to
complete this work.

I also wish to thank the Computer Science instructors who helped me recruit the
students who participated in my research study, as well as the students themselves.
Without the students, there would have been no study.

I especially wish to thank the friends and family who encouraged me to keep
going when I began to falter because I was feeling overwhelmed by the amount of time
and effort I needed to put in to complete this dissertation. Some of those friends are on
my dissertation committee, so they are getting thanked twice.

Finally, a special thanks goes out to my cousin, Durand Kunkle, who regularly
called to ask how I was progressing with my dissertation. He has been planning the

celebration for some time now.

i

iv

TABLE OF CONTENTS
LIST OF FIGURES ...ttt sttt sttt e ix
ABSTRACT ...ttt ettt ettt Xiii
CHAPTER L:INTRODUCTION.......cccooiiiiiiiiineeeie ettt 1
1.1 Problem Statement..............cooooiiiiiiiiii et 1
1.2 Novice Teaching Approaches in Practiceccccccooiniiiiiniinnienen, 2
1.3 Contribution to Computer Science Education Research 5

CHAPTER 2:APPROACHES FOR TEACHING OBJECT-ORIENTED

PROGRAMMING ..ottt 6
2.1 Brief DesCriptions..........ccoooiiiiiiiiiiiiiieie e 6
2.2 Detailed DeSCTiptiOnsooooiiiiiiiiiiiii e 7
2.2.1 Objects-First Approach Using BlueJcccooovoeieioviiiiiiiiiiiiieeciens 7
2.2.2 Objects-First or Objects-Early Approach Using Alice...............coceuu..... 9
2.2.3 Imperative-First Approach Using PYthONccococvveciiviiienccnnenenne 12
2.3 Distinctive Featuresccccccoviiioiiiiiiiiiiiiiece et 14
CHAPTER 3:REVIEW OF NOVICE PROGRAMMER LITERATURE 16
3.1 Programming Language Knowledge.............ccc.cooceiviniiinniniiinnee, 16
3.1.1 Procedural and Functional Languagesc.ccccccovevveveesvnesieenneens, 16
3.1.2 Object-Oriented LANGUAZESccccceoruiriiriouenneeniieeineeenirenie e 17
3.2 Programming MiSCONCePLIONScoooiiiiiiiiiiiiicciee e 18
3.3 Scaffolding for Learning Object-Oriented Programming......................... 20
3.3.1 Definition of SCaffoldingc.ccccovvvvivviniinicniiiiiniiiicecieec e 20

3.3.2 Key Features of SCaffoldingcc..ccovevevecreeiioniciiiaiieieenesee e 21

3.3.3 Scaffolding to Support Learning to Programc..cocevvccevenvevicinnennnn 21

3.4 Theories of Learning to Program...........cc..ccoociniiiiiiiiiiiii e 22
341 CONSIFUCHIVISH c.vveneeeiaeereeeetteeiee et ettt et e s e e s s saeens 22
34.2 Assimilation Encoding TREOTYc.cccoccecvimiiiiniiiioiiiiiiiiiiiccenieceien 24
343 Advance OFQaARIZErSouuueeiiiieeieriiiiniieia ettt cete e eaee e 25

3.5 Model of Object-Oriented Programmingcccocccoeviniiriiinniincceninennn. 26

3.6 Transfer in Computing Environmentscccccccooiiiincieenicenninnenennes, 26
3.6.1 Definition of TranSferovcvveriiiivciiiiieiiiic et e 26
3.6.2 Theories Of TEARSIEr..........ccoovviomiiiiieiiiieeeece ettt 26
3.6.3 New Learning as Transfer from Previous Learningcc.ccccoeeeeeeeen. 27
3.6.4 Transfer Between Programming Languages and Text Editors................ 28

CHAPTER 4:EDUCATIONAL ASSESSMENTcccociiiiiiiiccccee e 29

4.1 Assessment in Computingc.ccoooeeviiiioiiniiniiiinenei e 29

4.2 Principles of ASSeSSMeNLt................cocceeiiiiiiiiinniii e 30

4.3 Approaches t0 ASSESSIMENTcocceeiiiiiviiniiiniiiiien e 30

4.4 EXIStING TOOISoccciiiiii e e 31
4.4.1 Mathematics, Science, and Engineeringcccoceeevvvvvencenrcceeveennennnn. 31
442 COMPULITE «.oovevveeeeeeeeeeeteee ettt ettt et e teee e e e sttt e s et e e s smaaese s anaaes 32

4.5 A Tool for Introductory Computingcoooiiiiiiiiiiiiinne e 33
451 RAHONALE ...ttt et 33
4.5.2 Characteristics Of the TOOL............cccccoveimvviimiiiiiniiiiicieecene e 34
4.5.3 T00l DEVEIOPIERL «......ooiiiaiiiiiiiiiiieete ettt 41

4.5.4 Reliability and Validity of the ToOl...........ccccccovveveemiiiiiciiniiiiiicn 42

CHAPTER S:PILOT STUDY ...ttt 46
5.1 PUIPOSE....cniiieiiiieieteeeeet ettt et e et et ess e e st e sate e nesebtesntesateennsenaneeareenns 46
5.2 PartiCiPants..........coccoocorieiiiieiceie ettt ene 46
5.3 TASK oo e e 46
54 ReSUIS ..o e 47
5.5 ADALYSIS ..ottt s 49

CHAPTER 6: RESEARCH QUESTIONS AND HYPOTHESESc.ccccoone. 51
6.1 Research QUESHIONS..............coiieiiiiieeie et ereeeeres e 51
6.2 Related Hypotheses...........c.ccooceiiiiieniiiinieiiieiieeieeeeciee et siee v 52

CHAPTER 7:EXPERIMENTAL STUDY DESIGN ..o, 53
7.1 Purpose of STUAYcccccooviiniiiiiiii e 53
7.2 Description of Methodology (General)...................c.coooooeiiiiiiiiiciiiccee e, 53

72,1 Time DiIFenSIONccoeiuiiriiiiriiiieeeit et ettt et eseea e eree e 53
T.2.2 Units 0f ARGLYSIS «cccovveiieeiiiiii ittt raae e ananae s 53
7.2.3 Units of Observation (PartiCipants }......ccccoceevvereeeeoiieeeeieiineeensiieeesesneens 53
T 24 CONSIIUCES wevieeee ettt ettt ettt e st e st e e tesseiee e ateeennaeens 54
T.2.5 Terms 0F COMPORENLSveeeeiviveiiasaseniiieseceee e eseraae e srase s savae s eaavaea s 54
7.2.6 Level 0f MeQSUTEMENTccco.eiveeeieaacieie oottt 55
7.3 Description of Methodology (Detailed)ccooooiiiiiiiiie, 55
T30 DESCHIPIION ceeiaei ittt ettt e ssaa et e eesree s naan e 55
7.3.2 ReSearch QUESTIONSc...occuveierieeeiieeeecaaeeie et eeeereae s saneeeeeieeseeveeanes 55
7.3.3 Related HYPOIRESESc..cooiiiieeeiieeeiieeeee et 56

T34 MeEtROAOIOZY ..ot 56

T35 DAIA ARGLYSIS ..ottt ettt 57
CHAPTER 8:MAIN STUDY DESCRIPTION AND RESULTSccccoiiviininn. 58
8.1 PUTPOSE. ...ttt et ettt e e s 58
8.2 PartiCIPAnts..........cccooooiiiiiiiiiiie et 58
B3 TaSK i et 60
8.4 ReSUILS ..o 60
8.5 Assessment TOOlc.oocooviiniiiiiiiiii e 61
8.5.1 SCOFING ProOCEAUYec...covveeeeeaeiiaeeiteeeeeeeeee et 61
8.5.2 Item Response Patterrt ANGLYSISccoceeeiieiiiiiireiiiiiveeeeeeniae e 61
8.5.3 Item Discrimination ANALYSIS.......cccoovvvvcciiimiiieiiiiiiinieie et eseiiieeaaes 67
8.6 Student Performance...............cccooieniiiiniiiiiiiiiniicie e 82
8.6.1 Score Distribution ANGLYSIScccoeeeeveeeiiiiiiee et 82
8.6.2 Mean Scores Analysis by Language Groupcooeeeeeeveveneceeceenanennne 83
8.6.3 Topic Area Analysis by Language Groupc..ccccoveceeeeienevneenncceeennan, 88
8.6.4 Code-Completion Analysis by Language Groupccoccovevveeeencnennnn. 94
CHAPTER 9:DISCUSSION ..ottt sreestete sttt sia et e 96
9.1 Importance of Computer Science Education Research.............................. 96
9.2 Assessment Instrument Performancec.cccooiiiiiincnn, 97
0.3 Student Performancecccoocoiiiiiiiiiiiiiiicc s 100
9.4 Implications for Computer Science Education ... 105
0.5 Future WorkK ... b 106

LIST OF REFERENCESocooiiiiiii e 109
APPENDIX A: DEMOGRAPHIC SURVEY DATA FOR PILOT STUDY 123
APPENDIX B: PRE-TEST RESULTS FOR PILOT STUDYcccooiiiiiiiis 124
APPENDIX C: POST-TEST RESULTS FOR PILOT STUDY ..o, 125
APPENDIX D: PRE-TEST QUESTION RESPONSES BY QUARTILE FOR
MAIN STUDY ..o 126
APPENDIX E: POST-TEST QUESTION RESPONSES BY QUARTILE FOR
MAIN STUDY ...t 127
APPENDIX F: ITEM DISCRIMINATION ANALYSIS FOR PRE-TEST FOR
MAIN STUDY ..ot e 128
APPENDIX G: ITEM DISCRIMINATION ANALYSIS FOR POST-TEST FOR
MAIN STUDY ..ot 130
APPENDIX H: CORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR PRE-TEST FOR MAIN STUDYc.cccciiiiins 132
APPENDIX I: CORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR POST-TEST FOR MAIN STUDY ..o, 134
APPENDIX J: INCORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR PRE-TEST FOR MAIN STUDY ... 136
APPENDIX K: INCORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR POST-TEST FOR MAIN STUDY............ccccoiiiins 139
APPENDIX L: DEMOGRAPHIC SURVEY DATA FOR MAIN STUDY 142
APPENDIX M:DEMOGRAPHIC SURVEY FOR MAIN STUDYcccccvnnnn. 145
APPENDIX N: ATTITUDE SURVEY FOR MAIN STUDY ..., 146
APPENDIX O: COMPUTER CONCEPTS SURVEY FOR MAIN STUDY 148
APPENDIX P: COMPUTER CONCEPTS SURVEY REVIEW FORM 155

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.

Figure 2-5.

Figure 2-6.
Figure 3-1.
Figure 4-1.
Figure 4-2.

Figure 5-1.

Figure 5-2.

Figure 8-1.

Figure 8-2.

Figure 8-3.

Figure 8-4.

Figure 8-5.

LIST OF FIGURES
An example Bluel project: people.ciiiiiiiicciinninniaeinecieeenenenns 8
An example BluelJ class template: Administration.c.ccccceeveveeenean 9
An example Alice 2.0 world: First Encounter.ccococcceveviiinnennnn 11
An example Alice 2.0 world: First ENCOURLET.ccccuevcurvciirveeeaneneeans 11

Source code for part of a Python program that calculates compound

NEETESE. c.eeeiertee ettt eeiree et er et et e e esemee e e s e e s e e e saanessomnresaabeeaaereesamnnesaaeees 13
GUI for a Python program that calculates compound interest.................... 14
Model of Assimilation Encoding Theory (Mayer, 1979).cccoeveenivnene 25
Pseudocode for Euclidean Algorithm (Gersting, 2007).....c..ccocveveenveennenne 40
Pseudocode for BinarySearch Algorithm (Gersting, 2007).........cccoeeeeee e 40

Mean pre-test (session one), post-test (session two), and percent change
scores for pilot study (categorization scheme one).......c..cceeeevveeeveenenrcinne 48

Mean pre-test (session one), post-test (session two), and percent change
scores for pilot study (categorization scheme two).c.ccceceeverievcinenne. 49

Proportion of students who chose each question response for session one
(PIELESE). c.etie et ettt ettt et e e sabee e e e s e ee s sttt 62

Proportion of students who chose each question response for session two
(POSTLESL). evenvreneeeuieieenee ettt et ettt st st sttt st 63

Proportion of session two students who chose each response for questions
5,9, 19, 20, and 23, divided into four groups by score (high to low)......... 64

Session one (pre-test) and session two (post-test) item discrimination
analysis for questions 1 through 11. ..., 70

Session one (pre-test) and session two (post-test) item discrimination
analysis for questions 13 through 16, 18, and 20 through 24..................... 72

Figure 8-6. Session one (pre-test) and session two (post-test) item discrimination
analysis for questions 12, 17, and 19.ccccooiiiniiiiiiniece 73

Figure 8-7. Session one (pre-test) reliability, average score, standard deviation, and
standard error of measurement statistics for questions 1 through 24.
Reliability is calculated using K-R21. ...ccoocoiiiiniiniiiiiineee e 75

Figure 8-8. Session two (post-test) reliability, average score, standard deviation, and
standard error of measurement statistics for questions 1 through 24 (left);
and questions 1 through 24, minus questions 12 and 19 (right).

Reliability is calculated using K-R21.ccccoovoiiroiiiiiiiieecereee, 75

Figure 8-9. Cronbach’s alpha values for session one (pre-test) and session two
(POSELESL). eeeeireeniieitie et e nte e st s eeeesueeeebt e baesereeteeeabeesraesnseesseesaseesaeennneas 77

Figure 8-10.Factors representing the construct “understanding of fundamental
programming concepts,” extracted through principal component
ANALYSIS. c.veiieiie ittt ettt e e 81

Figure 8-11.Session one (pre-test) and session two (post-test) scores for the 61
students who completed both parts of the study. ... 82

Figure 8-12.Mean scores for session one (pre-test) and session two (post-test) by
language group where: Java N = 13, Visual Basic N = 22, C++ N = 26,
TOtal IN = 01 oottt st e 84

Figure 8-13.Mean “basics” scores for pre-test and post-test by language group
where: Java N = 13, Visual Basic N =22, C++ N =26, Total N =61....... 39

Figure 8-14.Mean “logical expressions” scores for pre-test and post-test by language
group where: Java N = 13, Visual Basic N = 22, C++ N = 26,
TOtal N = O i 89

Figure 8-15.Mean “classes and objects” scores for pre-test and post-test by language
group where: Java N = 13, Visual Basic N =22, C++ N = 26,
TOtal IN = Ol oottt 92

Figure 8-16.Mean “code-completion’ scores for pre-test and post-test by language
group where: Java N = 13, Visual Basic N =22, C++ N = 26,

TOtal N = 01 ittt 94
Figure A-1. Demographic survey data for pilot Study........cccceeeveviininnciiicciienee e, 123
Figure B-1. Pre-test results for pilot Study.c.coociiiiiiiiiiii e 124

Figure C-1. Post-test results for pilot study. ..., 125

Figure D-1.

Figure D-2.

Figure E-1.

Figure E-2.

Figure F-1.
Figure F-2.

Figure F-3.

Figure G-1.
Figure G-2.

Figure G-3.

Figure H-1.
Figure H-2.

Figure H-3.

Figure I-1.
Figure I-2.
Figure I-3.

Figure J-1.

Figure J-2.

Figure J-3.

Xi

Proportion of pre-test students who chose each response for questions 1
through 12, divided into quartiles by score (high to low)...........ccccecenne 126

Proportion of pre-test students who chose each response for questions 13
through 24, divided into quartiles by score (high to low).....c.c...c.c.coeie 126

Proportion of post-test students who chose each response for questions 1
through 12, divided into quartiles by score (high to low)...........cceouennnee. 127

Proportion of pos-test students who chose each response for questions 13
through 24, divided into quartiles by score (high to low).......c..coeeeennn.e. 127

Pre-test item discrimination analysis for questions 1 through 12............... 128
Pre-test item discrimination analysis for questions 13 through 24............. 128

Reliability, average score, standard deviation, and standard error of
measurement Statistics fOr Pre-test........cooocviirveiriiernirnnieniecieeeccee e 129

Post-test item discrimination analysis for questions 1 through 12. 130
Post-test item discrimination analysis for questions 13 through 24. 130

Reliability, average score, standard deviation, and standard error of

measurement Statistics for POSt-test.cccceevieriiiiieiee e 131
Correct response percentages for questions 1 through 8 of pre-test. 132
Correct response percentages for questions 9 through 16 of pre-test. 132
Correct response percentages for questions 17 through 24 of pre-test. 133
Correct response percentages for questions 1 through 8 of post-test. 134
Correct response percentages for questions 9 through 16 of post-test. 134

Correct response percentages for questions 17 through 24 of post-test.135

Incorrect response percentages for questions 1 through 8 of pre-test
where: Java N = 13, Visual Basic N =22, C++ N = 26, Total N =61....... 136

Incorrect response percentages for questions 9 through 16 of pre-test
where: Java N = 13, Visual Basic N =22, C++ N = 26, Total N =61.......137

Incorrect response percentages for questions 17 through 24 of pre-test
where: Java N = 13, Visual Basic N =22, C++ N = 26, Total N =61.......138

Figure K-1.

Figure K-2.

Figure K-3.

Figure L-1.

Figure L-2.

Figure L-3.

Figure M-1.
Figure N-1.
Figure N-2.
Figure O-1.
Figure O-2.
Figure O-3.
Figure O-4.
Figure O-5.
Figure O-6.

Figure O-7.

Figure P-1.
Figure P-2.

Figure P-3.

xit

Incorrect response percentages for questions 1 through 8 of post-test
where: Java N = 13, Visual Basic N =22, C++ N =26, Total N =61....... 139

Incorrect response percentages for questions 9 through 16 of post-test
where: Java N = 13, Visual Basic N =22, C++ N =26, Total N =61....... 140

Incorrect response percentages for questions 17 through 24 of post-test
where: Java N = 13, Visual Basic N =22, C++ N =26, Total N =61....... 141

Demographic information for the 14 Java students; the highlighted records
represent students who only completed the first part of the study.............. 142

Demographic information for the 29 Visual Basic students; the high-
lighted records represent students who only completed the first part of

thE STUAY. .eeiiiiiiirie e et 143
Demographic information for the 26 C++ students; all of the C++

students completed both parts of the study.......c..ccccoeviiiiiniiiinnn 144
Demographic survey, pages 1 and 2.coccoioiiiiiiiiiniiiee 145
Attitude survey, pages 1 and 2......c.ccooeeeeriiiriiinienceceeee e 146
Attitude SUTVEY, PAZE 3. ittt 147
Computer concepts survey, pages 1 and 2.coccooveevviiniiinenicecieeniennene 148
Computer concepts survey, pages 3 and 4. ..o 149
Computer concepts survey, pages Sand 6.cocceeievvieniieeiinccicennn, 150
Computer concepts survey, pages 7 and 8.cocovvvierieiiiinnieiceeeniceeens 151
Computer concepts survey, pages 9 and 10. ..., 152
Computer concepts survey, pages 11 and 12. ... 153
Computer concepts survey, pages 13 and 14. ..., 154
Computer concepts survey review form, page 1.....ccccooccvvviinicniiinennnnnne. 155
Computer concepts survey review form, page 2.......cccceveveevienveecviniiceninens 156
Computer concepts survey review form, page 3.......ccccooeviiervcnicencneene. 157

X1il
Abstract

The Impact of Different Teaching Approaches and Languages on
Student Learning of Introductory Programming Concepts

Wanda M. Kunkle
Robert B. Allen, Ph.D. Supervisor

Many students experience difficulties learning to program. They find learning to
program in the object-oriented paradigm particularly challenging. As a result, computing
educators have tried a variety of instructional methods to assist beginning programmers.
These include developing approaches geared specifically toward novices and
experimenting with different introductory programming languages. However, having
tried these different methods, computing educators are faced with yet another dilemma:
how to tell if any of these interventions actually worked?

The research presented here was motivated by an interest in improving practices
in computer science education in general and improving my own practices as a computer
science educator in particular. Its purpose was to develop an instrument to assess student
learning of fundamental and object-oriented programming concepts, and to use that
instrument to investigate the impact of different teaching approaches and languages on
students’ ability to learn those concepts.

Students enrolled in programming courses at two different universities in the Mid-
Atlantic region during the 2009-2010 academic year participated in the study. Extensive
data analysis showed that the assessment instrument performed well overall. Reliability
estimates ranged from 0.65 to 0.79. The instrument is intrinsically valid since the

questions are based on the core concepts of the Programming Fundamentals knowledge

Xiv
area defined by the 2008 ACM/IEEE curricular guidelines. Support for content validity
includes: 71% of correct responses varied directly with the students’ scores; all possible
responses were selected at least once; and 21 out of 24 questions discriminated well
between high and low scoring students. CS faculty reviewers indicated that 19 out of 24
questions reflected basic concepts and should be used again “as 1s” or with “minor
changes.” Factor analysis extracted three comprehensible components, “methods and

5 <k

functions,” “mathematical and logical expressions,” and “control structures,” suggesting
the instrument is on its way to effectively representing the construct “understanding of
fundamental programming concepts.”

Statistical analysis revealed significant differences in student performance based
on language of instruction. Analyses revealed differences with respect to overall score
and questions involving assignment, mathematical and logical expressions, and code-

completion. Language of instruction did not appear to affect student performance on

questions addressing object-oriented concepts.

CHAPTER 1: INTRODUCTION

1.1 Problem Statement

Learning to program is a difficult undertaking for many students. Of the
programming language paradigms currently taught, the object-oriented paradigm is
especially hard for beginning programmers to grasp. Object-oriented languages such as
Java and C++ require that students think abstractly to create software objects that model
real-world objects. Personal experience teaching object-oriented programming
(specifically, C++ and Java) has taught me that this type of thinking does not come easily
to most students. Students struggling to master difficult object-oriented concepts become
frustrated, losing confidence in their ability to program.

In an effort to help students learn to program in the object-oriented paradigm,
computing educators have developed teaching approaches geared specifically toward
novices. These approaches range from high-level approaches that focus on creating and
manipulating classes and objects to low-level approaches that focus on writing source
code. Because of their novelty, these approaches are often accompanied by programming
environments designed specifically to support them (Kelleher and Pausch, 2005).
Discussions of these innovative approaches will therefore include descriptions of their
supporting environments.

In addition to developing novel teaching approaches, computing educators have
experimented with using different programming languages to facilitate the process of
learning to program. Languages that have been used to introduce students to

programming include Basic, Visual Basic, Pascal, C++, Java, Python, Scheme, and many

others. Unfortunately, some of these languages come with development environments

that present students with yet another obstacle to overcome. Students learning to

program in Visual Basic, for example, must use Microsoft Visual Studio (Microsoft

Visual Studio, 2010). Visual Studio is a professional programming environment

equipped with a plethora of features that novice programmers often find overwhelming.

Having tried different teaching approaches and programming languages to
alleviate the beginning programming experience, computing educators are faced with yet
another dilemma: how to tell if any of these interventions actually worked?

Unfortunately, as Goldman, et al. (2008) point out, “there remains a notable lack of

rigorous assessment tools in computing.” Consequently, there is presently no objective

way to accurately determine the impact of diverse teaching approaches and languages on
student learning of introductory programming concepts.
The purpose of this research was thus twofold:

¢ To develop an instrument to assess student learning of fundamental programming
concepts and specific object-oriented programming concepts.

e To use the instrument developed to investigate the impact of different teaching
approaches and programming languages on students’ ability to learn the above
concepts.

1.2 Novice Teaching Approaches in Practice

It seems reasonable to suppose that a teaching approach that emphasizes the
mastery of high-level concepts may very well hinder the mastery of low-level concepts,
and vice-versa. For example, researchers at Monash University, Melbourne, Australia,

and the Mersk Institute at the University of Southern Denmark advocate an “objects-

first” approach to teaching object-oriented programming. The Bluel environment they
developed to support their approach therefore emphasizes interacting with static
visualizations of classes and objects to facilitate the learning of object-oriented concepts
(Barnes and Kolling, 2005; BlueJ, 2005; Kolling, Quig, Patterson, and Rosenberg, 2003).
Ragonis and Ben-Ari (2005b) used Bluel to investigate the learning of object-oriented
programming by high school students over the course of an academic year. They found
that while BlueJ helped students understand object-oriented programming concepts, it did
not help them understand the overall execution (or “flow”) of a program. These findings
suggest that the students were unable to trace the program’s source code, an ability
required to understand its execution. I noted a similar phenomenon in the Java for
Object-Oriented Programmers course I took over when a colleague became ill.
Specifically, a student who learned to program in Java using BlueJ did not realize that in
order to create an application he could run and test, all he had to do was implement a
“main” method for a new or pre-existing class. Similarly, another student in the same
course (who also learned Java programming using BluelJ) did not seem to understand that
a complete (i.e., executable) Java program requires a “main” method. He thought it was
sufficient to be able to instantiate an object of a class, then right-click on the graphical
representation of the object that BlueJ creates to select and run its various methods.

The authors of Learning to Program with Alice (Dann, Cooper, and Pausch, 2006)
support either an “objects-first” or an “objects-early” approach to teaching object-
oriented programming. Alice (Alice v3.0, 2010) is a three-dimensional (3-D) graphics
programming environment designed to enhance students’ initial experience with learning

to program by enabling them to build virtual worlds without having to write source code.

Unlike the BlueJ environment, Alice preceded its accompanying teaching approach.
Users of Alice report experiences similar to those reported by users of BlueJ. Powers,
Ecott, and Hirshfield (2007) first used Alice to teach their CSO (introductory)
programming course in the Fall 2005 semester. They followed the approach of Learning
to Program with Alice (Dann, Cooper, and Pausch, 2006) and postponed introducing
programmer-defined variables until late in the Alice portion of the course. They found
that this approach initially contributed to student understanding of loops, conditionals,
and events. Once variables were introduced, however, the difficulties students generally
encounter with these constructs resurfaced.

Clancy (2004) reports a similar experience with a course in which Karel the
Robot (Pattis, 1981) was used to acquaint college students with introductory
programming concepts before moving to the Pascal language. Karel The Robot is a robot
simulator that introduces students to programming using a language similar to Pascal,
except for the absence of variables. One term, a colleague of Clancy’s spent more time
than was typically spent on Karel before transitioning to Pascal. His students exhibited
better than usual comprehension of control flow and procedural decomposition. Once his
students moved to Pascal, however, they experienced difficulty with procedures that
involved parameter passing because they did not understand the concept of a variable.

When object-oriented programming first appeared in the computer science
curriculum, it was taught using what might be described as an “objects-late” or an
“imperative-first” approach (Joint Task Force, 2001). Courses that introduced students to
object-oriented programming began by teaching them fundamental procedural

programming concepts such as variables, assignment, conditionals, loops, and

procedures/functions early in the course, followed by classes and objects later in the
course. Personal experience has taught me that this approach did not work particularly
well. Students struggled to grasp the concept of abstract objects modeling real-world
objects, as well as to master the syntax of the code required to create those objects.
1.3 Contribution to Computer Science Education Research

Computer science educators have been motivated by both the complexity of
object-oriented languages and the complexity of professional tools for programming in
them to develop approaches and environments specifically to help students learn object-
oriented programming. Unfortunately, too little is known about why students find
learning to program so hard. In order to help them resolve their difficulties, more
research needs to be done in pinpointing the source of those difficulties. It is hoped that
by studying the impact of different teaching approaches on student learning of
introductory programming concepts and by building a tool to assess that learning the
research conducted here will have made a meaningful contribution to the body of
computer science education research. According to the Computing Research Association
(CRA), enrollment in American computer science programs during the 2007-2008
academic year increased for the first time in six years (Zweben, 2009). It should go
without saying that any efforts to continue that trend will be welcomed by the computer

science community.

CHAPTER 2: APPROACHES FOR TEACHING OBJECT-ORIENTED
PROGRAMMING

2.1 Brief Descriptions

Numerous approaches for teaching introductory object-oriented (OO)
programming currently exist. Three examples should suffice to demonstrate a diversity
of approaches. Two focus on creating and manipulating classes and objects, while the
third focuses on writing source code. The first represents an “objects-first” approach
supported by the BlueJ environment. Bluel is an easy-to-use integrated development
environment (IDE) that allows beginning Java programmers to visualize and interact with
classes and objects before ever seeing or writing a line of code (Barnes and Koélling,
2005; Bluel, 2005; Kolling, Quig, Patterson, and Rosenberg, 2003). The second
represents either an “objects-first” or an “objects-early” approach supported by the Alice
environment. Alice is a three-dimensional (3-D) graphics programming environment that
enables students to build virtual worlds by dragging and dropping objects, methods, and
control structures into a suitable editor (Alice v3.0, 2010; Dann, Cooper, and Pausch,
2006). The third represents a more traditional “programming-first” or “imperative-first”
approach using Python. Python is an object-oriented scripting language that is being used
increasingly to teach introductory programming because of its simple and flexible syntax
and support for immediate feedback (Grandell, Peltomiki, Back, and Salakoski, 2006;

Python, 2007).

2.2 Detailed Descriptions
2.2.1 Objects-First Approach Using BlueJ

The “objects-first” approach advocates introducing students to concepts such as
classes, objects, methods, and parameters at the very beginning of a course in object-
oriented programming. It encourages students to interact with objects and their methods
before acquainting them with the code that created them.

BlueJ (2005) is an integrated development environment designed specifically for
teaching and learning introductory object-oriented programming in Java. It is basically a
front end developed to run on top of Sun Microsystems’ Java 2 Standard Edition (J2SE)
Development Kit (Java Platform, Standard Edition (J2SE), 2005) to provide an
environment that addresses three key shortcomings identified by its developers of
existing programming environments for object-oriented teaching (Ko6lling, Quig,
Patterson, and Rosenberg, 2003).

These shortcomings are:

e The environment does not reflect the object-oriented paradigm.

¢ The environment has been designed for professionals and is too complex for novices.
® The environment focuses on building graphical user interfaces (GUIs).

BlueJ seeks to overcome these shortcomings by providing beginning programming
students with an easy-to-use environment that allows them to visualize and interact
directly with classes and objects. Visualization is supported through UML-like diagrams.
Interaction is supported through dialogue boxes and popup menus. Templates support
code generation. Finally, BlueJ intentionally shields students from some of the more

advanced concepts of the Java language (for example, the “main” method with its

8

required signature “public static void main(String[] args)”) until the instructor is ready to
introduce them. A snapshot of BlueJ after opening the project people, one of the example

projects that comes with the standard BlueJ distribution, is shown in Figure 2-1.

Project Edit Tools Yiew Help

New.Class... N _
- Database |

1
Comopile !
)

Ll

<<abstract>>
L--—-—3| “Person:

AN

Staff . Student

Initialising virtual machine... Done

Figure 2-1. An example Bluel project: people.

Figure 2-2 shows a template for an Administration class, not yet implemented.

dministration
Class Edit Tools Options

@l [Paste] [Find,..] [Fin‘d Next] [Closel Implementation {:/

"53 l/rx i*
il * Write a description of class Adninistration here. §

H
*

* Bauthor (your nanme)
* Qversion (a version number or a date) ’ ;
#/ H
“lijpublic class Administration

3

private int x;

/#R

* Constructor for objects of class Administration
*/

public Administration{)

{

Sy AfAvIal
X = 02

}

/xx

* An example of a method - replace this comment with your owm
*

* @param vy a sanple parameter for a method

* @return the sun of x and y :
%y 1
public int sampleMethod(int y)
{

o seds

return x + y:

changed

Figure 2-2. An example Bluel class template: Administration.

2.2.2 Objects-First or Objects-Early Approach Using Alice

The “objects-first” and the “objects-early” approaches differ only in the amount
of time that elapses before students are introduced to actual programming language code.
The wait is slightly longer for “objects-first” than it is for “objects-early.”

Alice (Alice v3.0, 2010) is a three-dimensional (3-D) graphics programming

environment for building virtual worlds. Originally designed for undergraduate students

10

with no 3-D graphics or programming experience, the focus of the Alice project has

expanded to include middle school and high school students. The goal of the Alice

project is to enhance students’ initial experience with learning to program in two ways:

¢ Remove needless frustration.

¢ Provide an environment in which novice programmers of both genders can create
compelling programs.

Needless frustration is minimized by allowing students to create programs without
ever typing a line of code, thereby preventing syntax errors. Programs, or worlds, as they
are called in Alice, are constructed primarily by dragging and dropping objects, their
associated methods, and standard control structures into the appropriate editor. An
environment for creating simple, yet exciting programs is provided by using
“storyboarding” as a metaphor for designing computer programs that take the form of 3-
D movies and games. Students can test their programs at any point in the design process
by simply pressing the Play button on the Alice tool bar.

Figure 2-3 shows an example Alice world, First Encounter. A snapshot of the

world as it plays appears in Figure 2-4 (Dann, Cooper, and Pausch, 2006).

0 0A05712005) - CA\Documents and Settings\WMK\Desktop\Drexel 2005-2006\ndependont Study - AtlervFinal

SaEEN

. |Events |create new event l

When the world starts, do

&3] %luﬁarlander - \ - .
T == © World.my first method |

i

World.my first method No parameters

No variables create new variable

-

Do in order
spiderRobet encounters an alten on a distant moon —
spiderRobot turn * v E alienOnWheels move up 1 meter

spiderRobot roll

spiderR(ibot resize :

Figure 2-3. An example Alice 2.0 world: First Encounter.

Figure 2-4. An example Alice 2.0 world: First Encounter.

file://C:/Documents

12

2.2.3 Imperative-First Approach Using Python
The “imperative-first” approach begins by teaching students procedural
programming techniques to learn about the imperative aspects of an object-oriented
language, followed by object-oriented techniques to learn about its object-oriented
qualities. Imperative aspects include expressions, control structures, procedures, and
functions. Object-oriented qualities include classes, objects, methods, and inheritance.
Python (2007) is an object-oriented scripting language that is being used
increasingly to teach introductory programming. (JavaScript is another, but it must be
embedded in a host environment such as a Web page to use it (JavaScript, 2007).)
Features that make the language particularly suitable for beginning programmers include:
e Simple syntax.
e Enforced program structure.
¢ Dynamic typing of variables.
e Powerful built-in types, such as lists.

e Easy-to-use graphics libraries.

Interactive mode for experimenting with code.
The source code for a Python program that calculates compound interest is shown in

Figure 2-5. Figure 2-6 displays the corresponding GUI (Agarwal and Agarwal, 2005).

*complIntCalculator.py’~ C;\D&fl.:li'ne_\ .
Filz Edit Format Run -Options Windows Help

§The Tk interface allows you to set up a GUI.
from Tkinter impors *

#This is executed when the lefr button of the mouse ("Button-l") is pressed.
dai getValue{event):

stringValuel=textl_get ()

Principal=float {stringValuel)

stringValueZ=text2.get {}
Rate=float (stringValue2)

stringWValue3=cext3.get ()
NunYears=float (stringValue3)

Amount=Principal * (1l + Rate) ** MumYVears

labeld4=Label (smallWindow, text="The compounded walus is:$" + "$.Z£" % Amount)
labeld _pack ()

1 $#Set up a new window called smallWindow with the title
#"Compound Interest" of size 200 by 200 pixels.
smallWindow=Tk ()

smallWindow.title{“Conpound Interest™)

smallWindow. geometry("2002200")

fDisplay a label followed by a box for each data entry.
labell=Label {smallWindow, text="Entesr Principal:™)
labell.pack ()

textl=Entry()
textl_packi)

labelZ=Label{smallWindow, text="Enter Race (rsal):")
label? packi)

textZ2=Entry{)
text2.pack{)

label3=Label{smallWindow, text="Enter Humber of Yaars:")
label3 . pack()

text3=Entry(}
text3.pack()

button=Buttoni{text="Caloulata")
button.pack ()
button.bind (" <Button~1%" getValue)

=loix}]

nainloop () -
: : o » Lr: 50|Col; 0

Figure 2-5. Source code for part of a Python program that calculates compound interest.

13

14

=101 x]

Erter Principal

{1000 ,
Erier Rate {real):” -
65
: Enter Number of Years: .
S i 5

» vv:'Thé't':-ompounded val 3 $162888

Figure 2-6. GUI for a Python program that calculates compound interest.

2.3 Distinctive Features

The teaching approaches described above each have characteristics that their
proponents claim make their approach superior to the others for teaching object-oriented
programming. Advocates of the “objects-first” approach using Blue] believe that
focusing on high-level concepts (graphical representations of classes and objects)
contributes to a better overall understanding of object-oriented programming than
focusing on low-level concepts (lines of source code) (Ko6lling, Quig, Patterson, and
Rosenberg, 2003). Advocates of the “imperative-first” approach using Python claim that
its simple syntax, easy-to-use graphics libraries, and support for small- as well as large-
scale object-oriented program development make it particularly suitable for teaching
introductory programming (Agarwal and Agarwal, 2005, 2006). Finally, Alice’s
advocates believe that blending traditional problem-solving techniques with Hollywood-
style storyboarding will enable students to readily create compelling object-based

programs, thereby improving motivation, reducing attrition, and smoothing the road to

15

learning professional object-oriented languages such as C++ or Java (Dann, Cooper, and

Pausch, 2006).

16

CHAPTER 3: REVIEW OF NOVICE PROGRAMMER LITERATURE

3.1 Programming Language Knowledge
3.1.1 Procedural and Functional Languages

Early studies of programmers focused on novices learning procedural and
functional languages. These studies frequently involved identifying what concepts
novice programmers are actually learning (or failing to learn) and what misconceptions
they have.

Bonar and Soloway (1983) used video-taped interview studies that focused on
bugs and buggy programs to gain insight into how novices use a programming system.
They found that while novices generally understand what task a program is to carry out,
they have difficulty translating that task into program code.

Soloway, Bonar, and Ehrlich (1989) explored the relationship between the
strategies Pascal programmers use when solving problems involving loops and the
looping constructs they choose to implement their solutions. Results of their study
indicated that people prefer a looping strategy that reads and processes the i"™ element on
the i pass through the loop, as opposed to a strategy that processes the i™ element and
reads the (i + 1)" element on the ™ pass through the loop. Soloway, Bonar, and Ehrlich
also found that people are more likely to write correct programs when programming in
languages that facilitate their preferred cognitive strategy.

Kessler and Anderson (1989) investigated novice learning of control structures
within the context of a LISP-like programming language called SIMPLE. Specifically,

they studied students’ ability to write recursive functions and iterative functions and to

17

transfer between these two programming skills. Experimental results showed positive
transfer from writing iterative to recursive functions, but no transfer from writing
recursive to iterative functions. In general, the students had difficulty understanding
flow-of-control concepts.

3.1.2 Object-Oriented Languages

More recent studies have focused on novices learning to program in the object-
oriented paradigm. Two of the four described below were longitudinal studies.

Ragonis and Ben-Ari (2005) investigated high school students learning object-
oriented programming using Java and BluelJ over the course of two academic years.
Specific goals of their study involved identifying key concepts of object-oriented
programming that novices should be taught, the order in which these concepts should be
taught, and the conceptions novices build as well as the difficulties they encounter trying
to learn these concepts. Study results indicated four main categories of object-oriented
concepts: class vs. object, instantiation and constructors, simple vs. composed classes,
and program flow. A total of fifty-eight conceptions and difficulties were identified.

Stamouli and Huggard (2006) conducted a phenomenographic study over an
entire academic year to investigate first-year undergraduate computer science students’
understanding of the principles of object-oriented programming using Java. They found
that over half of the students did not attain a mature understanding of what learning to
program really means. They also found that most of the students perceived program
correctness as syntactic {(language-based) and functional (problem-based) correctness.
The researchers propose that their findings suggest a relationship between the two

themes.

18

Wiedenbeck and Ramalingam (1999) compared the comprehension of small
object-oriented and procedural programs by novices. Their goal was to determine the
differences, if any, between novices’ mental representations of object-oriented programs
and procedural programs, and the focus of each. Results of their study indicated that
novices’ mental representations of small object-oriented programs were strongest in
knowledge related to the function of the program, whereas novices’ mental
representations of small procedural programs were strongest in knowledge related to the
program text.

Evidence that Alice provides support for teaching and learning object-oriented
programming is still largely anecdotal. Cooper, Dann, and Pausch (2003a) observed that
novice programmers using Alice developed a firm sense of objects and inheritance, as
well as a strong sense of design. They also noticed that although Alice’s drag-and-drop
editor prevents syntax errors, most students were able to reproduce the proper syntax
when required to do so in code they wrote for exams (Cooper, Dann, and Pausch, 2003b).
3.2 Programming Misconceptions

Clancy (2004) and Soloway and Spohrer (1989) are both excellent resources for
learning about the misconceptions that beginning programmers commonly hold and the
kinds of errors they typically make. Clancy surveyed research into programming
misconceptions and their causes, followed by suggestions for addressing these
misconceptions. Based on the body of research, he divided programming misconceptions
into two mainicategories, those caused by inappropriate transfer, and those caused by

confusion about computational models.

19

According to Clancy, sources of inappropriate transfer include:
¢ English (natural language).

¢ Mathematical notation.

* Previous programming experience.

e Overgeneralizing from examples.

¢ Modification of correct rules.

e Misapplication of analogy.

Sources of confusion about computational models include:
¢ Input.

¢ Constructors and destructors.

® Recursion.

* Execution of PROLOG programs.

Many of the examples of research addressing programming-related
misconceptions that Clancy (2004) cited may be found in Studying the Novice
Programmer (Soloway and Spohrer, 1989). Bonar and Soloway (1989) discovered that
novice programmers learning Pascal confused the meaning of “while” in natural language
with its meaning in the Pascal programming language. One subject inferred that since
“while” is typically used as a continually active test in natural language, it can be used
similarly in the Pascal while loop. Putnam, et al. (1989), found that high school students
learning BASIC could not reconcile what they had learned in algebra with what they
were learning in BASIC. One student in particular indicated that the statement LET C =
C + 1 did not make sense and must be an error. The researchers also found that these

students generally experienced difficulty with the concept of reading data (input).

20

DuBoulay (1989) cautions programming instructors against the use of analogies. For
example, comparing a variable to a “box” may lead students to believe that a variable,
like a box, can hold multiple values.

Fleury (2000), also cited by Clancy (2004), identified misconceptions related
specifically to object-oriented programming. She found that students taking an
introductory Java course thought that they could assign values to an object’s instance
variables using a mutator function without first allocating memory for the object using a
constructor. She also found that they had apparently generated a set of overgeneralized
rules related to Java classes and objects based on a limited set of examples. Specifically:
¢ Different classes must have different method names.

* Arguments to methods must be numeric types.

* The dot operator must be applied to methods; it cannot be applied to instance or class
variables.

3.3. Scaffolding for Learning Object-Oriented Programming

3.3.1 Definition of Scaffolding

Scaffolding is a form of support that enables a student to solve a problem, carry
out a task, or achieve a goal that would be beyond his capabilities without assistance
(Wood, Bruner, and Ross, 1976). An important characteristic of scaffolding is that it
facilitates the student learning how to perform these activities independently when the
support is removed. Scaffolding was originally used to describe support provided by a
parent or a tutor. Scaffolding is now used increasingly to describe support provided by
software tools, curricula, and other learning resources (Puntambekar and Hiibscher,

2005).

21

3.3.2 Key Features of Scaffolding
The key features discussed here are based on the historical and theoretical roots of

scaffolding and are considered critical to its success (Puntambekar and Hiibscher, 2005).

These are:

¢ Intersubjectivity — Intersubjectivity, or shared understanding of a task, is attained
when the tutor and the student arrive at a shared understanding of the goal of the task
the student needs to perform.

¢ Ongoing diagnosis — The tutor must engage in an ongoing diagnosis of the student’s
current level of understanding to provide him with appropriate support. This requires
that the tutor reconcile his theory of the task and how it may be completed with his
theory of the performance characteristics of the student (Wood, Bruner, and Ross,
1976).

® Tailored assistance — The tutor adjusts the amount and type of support he provides
based on his ongoing assessment of the student’s understanding. This requires
continual interactions between the tutor and the student.

e Fading — This involves gradually removing the support as the student takes
responsibility for his own learning until he can function on his own. At this point the
student is able to generalize the process whereby he completed the task and apply it to
similar tasks.

3.3.3 Scaffolding to Support Learning to Program

Over the years, educators have experimented with various forms of scaffolding to

aid students in learning to program. The teaching approaches and supporting

22

environments discussed in Section 2 are examples of computer-based scaffolds developed
to help students learn to program in object-oriented languages.
3.4 Theories of Learning to Program

It is common knowledge that students have difficulty learning to program.
Theories have been put forth as to why this is so and suggestions made as to how to
remedy the situation.

3.4.1 Constructivism

Constructivism is a theory of learning which claims that students actively
construct knowledge rather than passively absorb it from textbooks and lectures. New
knowledge is created by combining experiential knowledge with existing knowledge, or
by reflecting on existing knowledge (Ben-Ari, 1998).

Constructivist ideas date back to the time of Socrates (Constructivism as a
Paradigm for Teaching and Learning, 2004). Although many have contributed to
constructivist theories, Emst von Glasersfeld (1990) credits Jean Piaget with being “the
great pioneer of the constructivist theory of knowing today.” Piaget was a trained
biologist who developed theories of intellectual development in the child by studying his
own children (Hergenhahn and Olson, 2001). Greatly influenced by Piaget’s ideas was
Seymour Papert, probably best known as the inventor of LOGO, a programming
language he created to teach mathematics to elementary school children (Papert, 1993).
Papert’s pioneering work has led to the widespread use of computer technology within
constructivist environments (Constructivism as a Paradigm for Teaching and Learning,

2004).

23

Constructivism has been applied successfully to learning topics in mathematics
and science (e.g., Cobb, et al., 1991; Cobb and Steffe, 1983). Pea, Soloway, and Spohrer
observed that a student learning to program also engages in constructivist activities.
Specifically, he actively builds a system of conceptual and procedural knowledge related
to programming. In “The Buggy Path to the Development of Programming Expertise”
they explored how this knowledge-building activity may lead to “errors” or
“misconceptions” in programming and how to increase instructors’ awareness with
regard to this phenomenon (Pea, Soloway, and Spohrer, 1987).

Ben-Ari (1998) explores the extent to which constructivism is applicable to
computer science education in general. Ben-Ari contends that many of the difficulties
experienced by a beginning computer science student stem from the fact that he possesses
no effective model of a computer. In other words, he has no existing knowledge in which
to integrate the information about computers and programming he hears in class or reads
in his textbook. Consequently, he must construct his own model of a computer. As an
alternative, Ben-Ari suggests explicitly teaching the model.

Hadjerrouit (1999) describes a pedagogical framework for teaching introductory
object-oriented design and programming based on constructivism. He believes that
constructivism is a particularly appropriate approach for teaching programming in the
object-oriented paradigm because it takes into account a student’s previous programming
knowledge and stresses the need for him to actively participate in the construction of
object-oriented knowledge. Hadjerrouit’s motivation for developing this teaching

approach was the realization that students experience great difficulty learning abstract

24

object-oriented concepts, and that their learning may be impeded by the presence of
procedural programming concepts.
3.4.2 Assimilation Encoding Theory

Mayer (1989) discusses how to promote meaningful learning of computer
concepts by novices. Meaningful learning takes place in much the same way that the
constructivists claim new knowledge is created. Specifically, meaningful learning is a
process whereby a learner connects new information with knowledge already existing in
memory. The connecting process is called “assimilation.” The existing knowledge to
which new information is connected is called a “schema.” Learning about computers and
computer programming requires assimilation to schema of new technical information.

Mayer’s Assimilation Encoding Theory provides a three-stage model (shown in
Figure 7) of how technical information must be processed to support meaningful learning
(Mayer, 1979). First, the information is “received” in working memory from short-term
memory (arrow “a”). Second, the information is transferred from working memory to
long-term memory if there 1s knowledge “available” in long-term memory to which to
relate it (arrow “b”). Third, the information is “actively” integrated with relevant existing
knowledge that has been transferred from long-term memory to working memory during

learning (arrow “c”).

25

Faciors in Learning for Theory 3
ta} Reception: Is mformation re.

THEORY 3 A .
— ceived into WM?
] _ {b) Availability: Is there anchor-
b | SHORY TERM W . .
> | (a) | WORKING ing knowledge in LTM?
= | MEMORY MEMORY {c) Activation: Is anchoring

knowledge transferred from
LTM to WM so that it can be
actively integrated with re-
ceived information?
ENCODING: Integrate anchoring
knowledge and received infor-
mation: then transfer new cog-
nitive structure to LTM. '

LONG TERM
MEMORY

»

Figure 3-1. Model of Assimilation Encoding Theory (Mayer, 1979).

Mayer (1989) explored techniques for increasing novices’ understanding of
computer programming that involved activating relevant existing knowledge in long-term
memory. Called “relevant anchoring ideas” by Ausubel (1968), two techniques that
Mayer explored are: 1) provide the learner with a concrete model of the computer and 2)
encourage the learner to explain technical information in his own words. Results of a
series of studies indicated that both techniques may lead to enhanced conceptual learning
of technical information, as measured by learners’ ability to solve novel problems.

3.4.3 Advance Organizers

The term “relevant anchoring ideas” derives from Ausubel’s work on advance
organizers (Ausubel, 1960, 1968). Ausubel (1968) described advance organizers as
“appropriately relevant and inclusive introductory materials” presented before the
learning material itself and at a higher level of abstraction, generality, and inclusiveness.
The purpose of the organizer was to provide “ideational scaffolding” for incorporating

and retaining the detailed information in the learning material that followed. While

26

Ausubel restricted advance organizers to abstract stimuli, Mayer and other researchers
extended them to include concrete physical analogies (Mayer and Bromage, 1980).
3.5 Model of Object-Oriented Programming

A beginning computer science student possesses no effective model of a
computer. Ben-Ari and others propose providing the student with one to use to integrate
new incoming information about computers and programming. An alternative approach
would be to provide him with support (i.e., some form of scaffolding) for constructing his
own model. One of the purposes of this research is to identify ways of doing precisely
that.
3.6 Transfer in Computing Environments
3.6.1 Definition of Transfer

Merriam-Webster’s Collegiate Dictionary (2003) defines transfer as “the
carryover or generalization of learned responses from one type of situation to another”
(definition 2b). Although the definition seems perfectly straightforward, researchers
interpret transfer of learning in many different ways. According to Barnett and Ceci
(2002), “there is little agreement in the scholarly community about the nature of transfer,
the extent to which it occurs, and the nature of its underlying mechanisms.”
3.6.2 Theories of Transfer

In spite of the controversy, the idea of transfer is still traditionally based on
theories of common elements. Thorndike (1906) proposed a theory of identical elements
which stated that training in one type of mental function or activity would transfer to
another only if the two activities shared common stimulus-response elements. The

common elements in Thorndike’s view involved associations between concrete entities.

27

Singley and Anderson (1989) resurrected Thorndike’s theory of identical elements and
recast it in abstract form. Using the ACT* theory of skill acquisition (Anderson, 1983),
they redefined Thorndike’s identical elements as mental elements instead of physical
elements. Essentially, they replaced Thorndike’s concrete stimulus-response pairs with
abstract condition-action pairs called productions. According to Singley and Anderson’s
modified version of the theory, transfer occurs to the extent that sets of productions for
different tasks overlap.

An alternative model of transfer that may prove beneficial to this research bears
mentioning. It is the “actor-oriented transfer” model proposed by Lobato (2003), which
emerged from her work with design experiments that explored transfer of algebraic
concepts. The classical approach to transfer focuses on the degree to which a learner
applies knowledge learned in one situation to a new situation based on the researcher’s
(or another expert’s) model of performance. The actor-oriented approach to transfer de-
emphasizes degree, and focuses rather on the influence of any previous activities on a
learner’s behavior in a novel situation, including the ways in which learning generalizes
(Lobato, 2006).

3.6.3 New Learning as Transfer from Previous Learning

The constructivists believe that students actively construct new knowledge by
combining experiential knowledge §vith existing knowledge. Bransford, Brown, and
Cocking (1999) paraphrase this as “all learning involves transfer from previous
experiences.” They point out that previous learning can help as well as hinder students’
ability to learn new information. For example, children’s experiences with counting and

putting things together when they play help them to learn addition and subtraction of

28

whole numbers when they begin school. Unfortunately, these same experiences
undermine children’s abilities to learn operations with fractions, which are not based on
the same underlying principles as whole numbers (e.g., you can’t generate a fraction by
“counting things”). With respect to computer programming, Hadjerrouit (1999) found
that students’ ability to learn object-oriented programming was somewhat impeded by
their previous experience with procedural programming.
3.6.4 Transfer Between Programming Languages and Text Editors

Studies have been conduéted to investigate transfer of skills between
programming languages and transfer of skills between text editors. Scholtz and
Wiedenbeck (1990a) studied moderately experienced programmers transferring to a new
programming language to determine the kinds of knowledge that transfer and the areas in
which programmers experience difficulties. They found that programmers encounter the
most difficulty trying to figure out how to implement a problem solution in the new
language, whereas issues of syntax and semantics present them with minimal difficulty.

Singley and Anderson (1985, 1988, 1989) studied computer-naive subjects from a
local secretarial school learning to edit text using three different text editors. Two of
these were classified as line editors, while the third was classified as a screen editor.
Singley and Anderson’s goal was to study transfer of text-editing skill between the line
editors and from the line editors to the screen editor. In general, they found positive
transfer of skill both between the line editors and from the line editors to the screen

editor.

29

CHAPTER4: EDUCATIONAL ASSESSMENT

4.1 Assessment in Computing

In spite of its unpopularity with students, testing is still the preferred method for
ascertaining the effectiveness of educational endeavors. An instructor who wishes to
assess his students’ learning constructs a test which he then administers to those students.
The results of that test provide the instructor with information about what his students
learned in his classroom based on his instruction. This scenario reflects the current state
of affairs in the field of computer science in which we have no standardized tools to
measure student learning of fundamental programming concepts.

Developing a standardized tool for a field as dynamic as computer science
presents special challenges. Computing educators use a variety of approaches and
languages to introduce students to computer programming. A “language independent”
tool that could be administered at both the beginning and at the end of a course would
enable educators to objectively measure student learning and assess the effectiveness (or
ineffectiveness) of their particular methodologies. For example, do students learn object-
oriented concepts better when taught with an “objects-first” or a “programming-first”
approach? Does programming language make a difference when teaching students about
modular programming (the practice of breaking a program into manageable chunks that
can be easily re-used)?

Several years ago, researchers at another educational institution began work on a
language independent tool to assess learning of fundamental computer science concepts.

An experimental version of this tool was used in the pilot study. Although I was aware

30

that the developers of the tool were now in the process of validating it, they were not
willing to share it. Since their experimental tool was the best computer concepts
assessment tool I could find, I adapted it for use at the two universities where the study
was conducted.

The chapter proceeds by reviewing assessment in general, followed by a
discussion of tools to assess student learning in mathematics, science, and engineering,
fields closely related to computer science. It continues by examining recent efforts to
develop assessment tools for computer science. The remaining sections focus on the
process used to develop the computer concepts survey used in this research.

4.2 Principles of Assessment

Educators use a variety of tools and techniques to evaluate student performance in
a particular subject area. These tools and techniques reflect two the key principles of
assessment (Bransford, Brown, and Cocking, 1999):

e What is assessed must be in agreement with one’s learning goals.
¢ It should provide opportunities for feedback and revision.
4.3 Approaches to Assessment

The two principles cited above correspond to two disparate approaches to
assessment, one traditional, the other contemporary. The first principle corresponds to
the traditional approach, called “summative” assessment. The second principle
corresponds to the contemporary approach, called “formative” assessment (Bransford,
Brown, and Cocking, 1999; Even, 2005).

Summative assessment typically involves giving students a paper-and-pencil test

at the end of a unit of study to measure what they have learned. The grades assigned on

31

the test represent the students’ level of achievement and may also be used to classify or
rank the students.

Formative assessment generally takes place in the classroom as a part of
instruction. Examples include teachers’ comments on students’ work in progress, such as
math worksheets, computer programs, or drafts of papers. Formative assessment
emphasizes providing feedback to increase students’ learning and transfer and obtaining
feedback to inform teachers’ instructional decisions.

Ideally, teachers should use a combination of summative and formative
assessment in their teaching. In reality, summative assessment is still the norm in many
classrooms (Bransford, Brown, and Cocking, 1999). This is because many teachers,
parents, and students still equate effective learning with memorizing facts and
procedures, a belief bolstered by the many standardized tests that overemphasize these
same skills. Determining the depth of students’ conceptual understanding requires
formative assessment techniques, however.

4.4 Existing Tools
4.4.1 Mathematics, Science, and Engineering

Many tools exist or are under development to assess student learning in subjects
such as mathematics, science, and engineering. The Algebra End-of-Course Assessment
(2009) is a multiple-choice test that K-12 math teachers can use to measure student
understanding of first-year algebra concepts. The Force Concept Inventory (FCI) is a
multiple-choice test that college physics instructors can use to assess student
understanding of fundamental concepts in Newtonian physics (Hestenes, Wells, and

Swackhamer, 1992). Thermal-science concept inventories have been jointly developed

32
by personnel from the University of Wisconsin-Madison and the University of Illinois
Urbana-Champaign. Designed specifically for mechanical engineering undergraduate
students, the three concept inventories evaluate student understanding of concepts in
thermodynamics, fluid mechanics, and heat transfer (Mitchell and Martin, 2007).
Assesément tools are also under development in biology, calculus, and chemistry, to
name but a few (Allen, 2007).

4.4.2 Computing

Assessment tools for computing are sorely lacking. There are two reasons for this
unfortunate state of affairs. The first is that the field of computing, by its very nature, is
highly dynamic. The second is that while the ACM and IEEE provide curricular
guidelines for undergraduate programs in computing (CS2008 Review Taskforce, 2008;
Joint Task Force on Computing Curricula, 2001), there are no actual standards per se as
there are in fields like math and science. A step was taken in that direction, however,
when, in April 2000, the International Technology Education Association (ITEA) and its
Technology for All Americans Project (TfAAP) published Standards for Technological
Literacy: Content for the Study of Technology. This document defines technological
literacy, and articulates the knowledge and abilities students in grades K-12 need to
become technologically literate. It does not provide a curriculum, however (ITEA,
2007). The International Society for Technology in Education (ISTE) also publishes the
one-page National Educational Technology Standards (NETS*S) and Performance
Indicators for Students (NETSS, 2007), which outlines six areas in which students
should possess technological competency. These include understanding technology

concepts, systems, and operations, among others.

33

The Educational Testing Service (ETS) maintains the Carl C. Brigham Library
Test Link database of more than 25,000 tests created by authors inside and outside of the
ETS. Querying the database for the search term comput* in the title field yielded over
100 matches which included:
e Advanced Placement Program: Computer Science A Exam
e Certificate in Computer Programming Examinations
e Computer Literacy Examination : Cognitive Aspect
¢ Computer Science Placement Exam
* Computer Science Test for Grades Nine Through Twelve
* Major Field Tests: Computer Science
e Student Occupational Competency Achievement Testing: Computer Programming
Unfortunately, based on their descriptions, none of these tests is appropriate for assessing
fundamental programming knowledge. In other words, there is no computer science
equivalent of the Force Concept Inventory.
4.5 A Tool for Introductory Computing
4.5.1 Rationale

The computer concepts survey used in the pilot study (described in Chapter 5)
was a slightly modified version of an experimental tool developed at another educational
institution (The name is being withheld in the interest of confidentiality.). In order to
validate the results of the pilot study and to further investigate the impact of different
teaching approaches on students’ ability to learn both fundamental programming
concepts and specific object-oriented programming concepts, it would be better to use a

tool that has been thoroughly tested. Unfortunately, no such tool is currently available.

34

Although I was aware that the developers of the experimental tool were now in the
process of validating the tool, they were not willing to share it. Consequently, I modified
. the experimental tool yet again to better suit the student population with which it would
be used. Adjustments were made in accordance with the guidelines laid out in the next
section.
4.5.2 Characteristics of the Tool
A list of guidelines for creating a computer concepts assessment tool was
developed by drawing on personal experience teaching computer science and
programming, the literature on computer concepts inventories under development (Tew
and Guzdial, 2010; Goldman, et al., 2008), and the literature on novice programmers’
errors and misconceptions (Clancy, 2004; Soloway and Spohrer, 1989). A review of this
literature combined with personal experience suggests that an instrument designed to
assess student learning of introductory programming concepts should possess certain
characteristics. Specifically, it should consist of questions and response choices:
1) Based on topics that students generally encounter in a first course in computer
programming (i.e., topics taught in a first programming course).
2) Based on topics that experts agree students should master by the end of a first course
in computer programming (i.e., fopics agreed upon by experts).
3) That contain distracters (incorrect answer choices intended to mislead the test taker)
based on the misconceptions that students learning to program commonly hold and
the kinds of errors they typically make (i.e., distracters based on novice errors and

misconceptions).

35
4) Written in a language that is “programming language independent” (i.e., language

independent pseudocode).

1) Topics taught in a first programming course

A good sense of topics generally taught in a first computer programming course
can be obtained by examining sample syllabi from institutions offering such courses. I
looked at syllabi from two different introductory programming courses taught at Rowan
University in Glassboro, NJ (Hartley, 2009; Provine, 2009), and two different
introductory programming courses taught at Drexel University in Philadelphia, PA
(Medlock, 2008; Popyack, 2009). While the topics covered in the four courses were not
exactly the same, they did commonly include: variables, conditionals, loops, arrays,
methods, and objects.

Tew and Guzdial (2010) recently reported on their progress in creating a language
independent CS1 assessment instrument. Section 4 of the paper discusses their strategy
for defining the instrument’s content. They began by analyzing the tables of contents of
twelve of the most widely adopted CS1 textbooks to identify a set of common concepts,
then used the Computing Curricula 2001 Computer Science guidelines for conceptual
content of introductory programming courses to refine the list.

2) Topics agreed upon by experts

Efforts are being made at both the undergraduate and pre-college (K-12) levels to
arrive at a consensus regarding topics in computing that should constitute a standardized
curriculum in computer science education. In 2006, the Computer Science Teachers

Association (CSTA) published the second edition of the ACM Model Curriculum for K-

36

12 Computer Science. According to the executive summary, the purpose of this report is
to propose “a model curriculum that can be used to integrate computer science fluency
and competency throughout primary and secondary schools, both in the United States and
throughout the world.” In addition, “It provides a framework within which state
departments of education and school districts can revise their curricula to better address
the need to educate young people in this important subject area, and thus better prepare
them for effective citizenship in the 21st century.” (CSTA, 2005)

As discussed in the section on assessment tools for computing, the ACM and
IEEE provide curricular guidelines for undergraduate programs in computing (CS2008
Review Taskforce, 2008; Joint Task Force on Computing Curricula, 2001). The
Programming Fundamentals knowledge area defines the skills and concepts that students
must master to become proficient programmers regardless of paradigm. Of the eight core
topics, fundamental constructs, algorithmic problem solving, data structures, recursion,
object-orientation, and secure programming are the six regularly included in introductory
programming courses. (The remaining two are event-driven programming and

foundations of information security.)

37

In 2008, Goldman, et al. (2008) employed a Delphi process to identify important
and difficult concepts in college-level introductory computing courses. The experts who
participated in the study agreed upon eleven topics for the particular area of programming
fundamentals. Arranged in order from most important to least important, these are:
® Procedure design.
¢ Conceptualize problems, design solutions.

* Issues of scope, local vs. global.

* Functional decomposition, modularization.

¢ Designing tests.

* Parameter scope, use in design.

¢ Debugging, exception handling.

e Abstraction/pattern recognition and use.

® Recursion, tracing and designing.

® Inheritance.

¢ Memory model, references, pointers.

In light of the current emphasis on object-oriented programming, it is worth noting that
only one of the eleven topics, inheritance, is exclusively object-oriented.

The Goldman, et al., study was conducted as part of a multi-institution project led
by Craig Zilles to develop concept inventories for three introductory computer science
subjects: discrete math, digital logic design, and programming fundamentals (Concept
Inventories, 2010). Using a Delphi process to identify important and difficult concepts is
step one of the four-step process the project investigators plan to use to develop the

inventories. Steps two through four are: identify common misconceptions for those

38

concepts, design questions using those misconceptions, and validate the concept
inventory (Goldman, et al., 2008). According to the information posted on the publicly
accessible portion of their Web site (Concept Inventories, 2010), the only concept
inventory on which they have done extensive work is the concept inventory for digital
logic design. Herman, Loui, and Zilles (2010) describe the process used to create and
evaluate an alpha version of the digital logic concept inventory that was administered to
203 students from the University of Illinois at Urbana-Champaign in Spring 2009.

3) Distracters based on novice errors and misconceptions

Clancy (2004) and Soloway and Spohrer (1989) are good resources for learning
about beginning programmers’ errors and misconceptions. This literature was reviewed
in Chapter 3.

The focus here is on the use of novice errors and misconceptions to inform the
development of incorrect answer choices. However, errors commonly made and
misconceptions commonly held can also inform the development of the questions
themselves. A good example is a question that asks a student to trace the code for a
“while” loop in which the loop control variable never gets incremented {(a very common
error!).

4) Language independent pseudocode

A good model for an appropriate pseudocode is that employed in Mathematical
Structures for Computer Science (Gersting, 2007). Gersting defines pseudocode as a
compromise form for describing algorithms that is readily understood by
nonprogrammers. It is, in her words, “a form that is a middle ground between a purely

verbal description in paragraph form and a computer program written in a programming

language.” The pseudocode that Gersting employs is a cross between English and a
Pascal-like procedural language. It is particularly suitable for students with minimal

programming experience. Two samples from her book appear in Figures 4-1 and 4-2.

39

GCD(positive integer a; positive integer b) -
Hla=b

Local variables:
integers i, j
i=a
i=b
while j »# 0 do
computei = gj + r,0 =r<j
i=j
Jj=r
end while

//i now has the value gcd(a b)
return i; - .

end _ﬁmcuon GCD

Figure 4-1. Pseudocode for Euclidean Algorithm (Gersting, 2007).

Bmm—ySearch(hst L; integer i t, ‘integer J;], itemtype x)
ffsearches sorted list L from L[i] to L[J} for 1tem x
if i > j then
Wnte(‘ not found”)
else

find the index k of the middle item in the list LE-L{jT
if x = middle item then
write(“found™)
else o
if x < middle item then
BinarySearch(L, i, k — 1, x)
. BinarySearch(L, k + 1, j, x)
endif
~ end if
end if
end function BinarySearch

Figure 4-2. Pseudocode for BinarySearch Algorithm (Gersting, 2007).

40

41

4.5.3 Tool Development

The assessment tool used in this research was created by modifying the
experimental tool used in the pilot study. The topic areas are based on the core topics
defined in the ACM/IEEE guidelines’ Programming Fundamentals knowledge area
(CS2008 Review Taskforce, 2008), i.e., the Topics agreed upon by experts, as well as the
Topics taught in a first programming course, discussed in Section 4.5.2. In addition, it
seemed important to include a question asking students to rank the difficulty level of the
computer concepts survey using a Likert-type scale. The current tool employs a multiple-
choice format in which questions consist of a stem (actual question) and four possible
responses. Of the four responses, one is correct, while the others are distracters (incorrect
responses).

Analysis of the pilot study results revealed features of the experimental tool that
needed to be adjusted for further use with Rowan and Drexel students. A few of the
questions were too easy, while others were too hard. In addition, many distracters were
never chosen. Finally, the pseudocode was unlike the pseudocode that Rowan and
Drexel students are accustomed to seeing in their computer programming classes.

Adapting the experimental tool entailed modifying the question stems, responses,
and pseudocode. Ideas for questions to replace those that were too easy or too hard were
drawn from programming textbooks, personal experience teaching programming, and, in
one case, a sample major field test for computer science. Ideas for distracters to replace
those that were never chosen were drawn from the literature on novice programmers’
errors and misconceptions (discussed in Distracters based on novice errors and

misconceptions, Section 4.5.2), personal teaching experience, and personal experience

42

doing SAT test preparation. The pseudocode was modeled after the pseudocode used by
Gersting (discussed in Language independent pseudocode, Section 4.5.2) and the
pseudocode used by a member of the Drexel Computer Science faculty in a diagnostic
test he developed.
4.5.4 Reliability and Validity of the Tool

Measurement experts currently associate validity with a set of scores rather than
with the assessment tool used to produce them (American Educational Research
Association, American Psychological Association & National Council on Measurement
in Education, 1999). Simply put, validity has to do with the meaning of the scores and
how we use them. It also has to do with the item responses that are aggregated to form
the scores (Haladyna, 2004). According to Ebel and Frisbie (1991), validity has two
aspects: what is measured and how consistently it is measured. Area of measurement
refers to a particular cognitive ability of interest. Consistency of measurement refers to

reliability. Reliability is a necessary but not sufficient condition to ensure validity.

43

A variety of methods exist for estimating score reliability (Ebel and Frisbie,
1991). These include test-retest, equivalent forms, split halves, Kuder-Richardson, and
Cronbach’s alpha. The methods used in this research estimated reliability using
information internal to the test. They are:
¢ Kuder-Richardson — Kuder and Richardson (1937) developed two of the most widely

accepted formulas for estimating reliability, K-R20 and K-R21. K-R20 uses number
of test items, proportion of correct/incorrect responses for each item, and variance of
test scores to estimate reliability. K-R21 uses test mean in place of proportion of
correct/incorrect responses for each item to estimate the value of K-R20.

e Cronbach’s alpha — This method, unlike K-R20, can be used to estimate reliability for
tests that employ weighted scoring. The formula is similar to K-R20 and uses
number of test items, variance of each item, and variance of test scores to estimate
reliability.

Researchers developing assessment tools comparable to the computer concepts
assessment tool have used either K-R21 or Cronbach’s alpha to measure reliability
(Herman, Loui, and Zilles, 2010; Nugent, Soh, Samal, and Lang, 2006), hence the choice
of internal consistency measures. K-R21 is easy to use, but may underestimate the
reliability coefficient depending on the average scores of the individual test items (Ebel
and Frisbie, 1991). Cronbach’s alpha was therefore used to obtain a second measure of
reliability. The K-R21 and Cronbach’s alpha formulas are similar, so their results will be
similar, but the Cronbach’s alpha reliability estimates will usually be a little higher.

The decision was also made to obtain separate reliability ratings for the pre-test

and the post-test instead of obtaining a single, overall reliability rating. Analysis of the

44

demographic surveys indicated that some of the students had not been exposed to all of
the programming concepts before taking the pre-test. By the time they took the post-test,
they would have been introduced to all of the concepts. Consequently, it was decided to
measure reliability separately for the pre- and post-test.

Validating test scores requires gathering evidence to support how the scores are
interpreted and used. It is more difficult to demonstrate than reliability because there is
no simple prescription for determining the forms of evidence that will be sufficient. The
three general categories of validity evidence are content-related, criterion-related, and
construct-related (Ebel and Frisbie, 1991). The two most appropriate for this research
are:

e Content-related — This type of evidence deals with how well the content of the test
represents the domain of knowledge, skills, and tasks the test is intended to measure.

e Construct-related — This type of evidence deals with what the test scores mean as a
psychological construct. For example, if a test is intended to measure the
psychological construct “understanding of fundamental programming concepts,” is

there sufficient evidence to show that it does?

Approaches used in this research to demonstrate content validity included:
¢ Insuring that the questions making up the computer concepts inventory addressed
core concepts of the Programming Fundamentals knowledge area defined by the
2008 ACM/IEEE curricular guidelines.
® Psychometric analysis techniques (section 8.5.3) to show that a majority of the
inventory questions effectively discriminated between students who performed well

on the inventory from those who did not.

45
Psychometric analysis techniques (section 8.5.2) to show that all distracters were
chosen and that many of the distracters exhibited desirable response patterns (i.e., the
percentage of students choosing distracters was inversely related to the students’
scores).

Expert reviews of the questions and corresponding answer choices for

appropriateness.

Approaches used in this research to investigate construct validity included:
Factor analysis to determine which questions should be removed from the computer
concepts inventory because they did not meet the acceptable load threshold of 0.4.
Factor analysis to determine how well the inventory questions grouped into the

constructs they were intended to measure.

46

CHAPTER 5: PILOT STUDY

5.1 Purpose

A pilot study was conducted to investigate the effectiveness of disparate teaching
approaches currently being used to help students learn to program in object-oriented
languages.
5.2 Participants

Fourteen students enrolled in two different C++ courses (CS 131, CS 171) during
the Fall 2008-2009 and Winter 2008-2009 terms at Drexel participated in the study.
Students in these particular courses were targeted for recruitment because of their
previous programming experience. Students enrolled in CS 131 generally take an earlier
course (CS 130) that introduces them to programming using Alice. Alice is a three-
dimensional (3-D) graphics programming environment that minimizes the frustration of
learning to program by enabling students to create compelling programs without ever
writing a line of code. Students enrolled in CS 171 generally take courses that introduce
them to programming using languages such as JavaScript or Python. Students learn to
program in these languages by writing source code in text-based environments.
5.3 Task

All fourteen participants completed the study, which consisted of two sessions.
They were paid for their participation. The first session was scheduled near the
beginning of the term, while the second session was scheduled near the end of the term
(or at the start of the following term). During the first session, each student was asked to

complete three surveys: a demographic survey to obtain information about his

47

background; an attitude survey to gain insight into his attitude toward computer science
and programming; and a computer concepts survey to assess his knowledge of computer
programming concepts. Students who participated in the study during the Winter 2008-
2009 term were also asked to solve a simple programming problem at the computer.
During the second session, each student was asked once again to complete the attitude
and computer concepts surveys. Those who participated during the Winter 2008-2009
term were asked to solve a slightly harder programming problem. Most of the students
completed each session in an hour or slightly more. The sessions were not timed.
5.4 Results

The data obtained from the demographic and computer concepts surveys is of
most interest to me. However, after recording the participants’ responses to the questions
on the computer concepts survey, it seemed necessary to find a way to compute pre- and
post-test scores for each participant that accounted for correct responses, incorrect
responses, and non-responses (i.e., omissions). The algorithm used to compute a raw
score on the multiple-choice portions of the SAT seemed appropriate. Specifically, “1” is
assigned for each correct response, “-1/(number of incorrect responses)” is assigned for
each incorrect response, and “nothing” (1.e., “0”) is assigned for non-responses.
Applying that algorithm yielded the summarized results for sessions one and two that
appear in Appendices B and C. The results of the demographic survey appear in
Appendix A.

Ten of the fourteen participants majored in areas other than Computer Science

and Software Engineering. These students possessed the programming backgrounds

48
closest to what I had been looking for in study participants. Consequently, the
subsequent summary and analysis will focus on the performance of these ten students.

The ten students of interest included five Physics majors, one Information
Technology major, two Mathematics majors, and two Digital Media majors. The Physics
and Information Technology majors had programmed mainly in Python. The
Mathematics and Digital Media majors had programmed mainly in Alice. The Excel
spreadsheets that follow (Figures 5-1 and 5-2) display the mean pre- and post-test scores
for these two groups of students, as well as the mean pre- and post-test scores for all of
the students who participated in the study. The spreadsheets also display the percent
change in these scores. Scores were calculated for categories of questions and for the
computer concepts survey as a whole. The two spreadsheets show the different ways in
which questions were grouped into categories. The shaded regions highlight findings that

I found to be of particular interest.

Session 1 Scores
Laops Loops
Logical {w/o {w/ Arrays
Means Operators if arrays} arrays} nctions ‘{only} Obje Overal} Definition Trace Write

8.169 4.025

~ 0.548
0.334)

QOverall Mean
_Alice Mean

0.715 1.667|
1.667

Session 2

togicat
Operators if

Arrays
{onky}

Means Overatl Definition Trace

0.762 1.83 0.81@ 8.764 4.733) 2.66
334 34 9.836
000 76031
Percent Change
Logical Arrays
Means Operators (f {oniy} Overal} Definition Trace
Overal! Mean 6.67% 11.42% 47.81% 13.52% 17.74% 20.42%)

0.28%

16.32% 4372489
B2 1A

.00

Figure 5-1. Mean pre-test (session one), post-test (session two), and percent change scores for pilot
study (categorization scheme one).

49

{Session 1 Scores
: Logicat

:Means Basics Operalors if For While Functions Arrays Objects Overall Definition Trace \Write
0.715 GHELADE 4.025

:1.667

:Overall Mean
Alice Mean
et

Session 2

Logical
Operators If

Overall Definition Trace
3.764
" '9.836

‘Means
;Overali Mean
lice Mean

‘Percent Change

Logical
Operators If
5.67%

Overall '~ Definition Trace
19.52% 17.74% 20.42%
o :

Means
‘Overali Mean

Figure 5-2. Mean pre-test (session one), post-test (session two), and percent change scores for pilot
study (categorization scheme two).

5.5 Analysis

The findings were both interesting and unexpected. (Note: For the purpose of this
discussion, the students who had programmed mainly in Python will be referred to as the
“Python programmers,” and the students who had programmed mainly in Alice will be
referred to as the “Alice programmers.”) For example, the Alice programmers
outperformed the Python programmers on the questions involving objects in session one
(as predicted), but the situation was reversed in session two. Overall, the Python
programmers exhibited a 42.1% increase in performance on the objects questions,
whereas the Alice programmers exhibited a 36.4% decrease in performance. The
situation was similar for the questions involving tracing code. In session one, the Alice
programmers once agatn outperformed the Python programmers, but in session two, the
opposite occurred. Overall, the Python programmers exhibited a 13.5% increase in

performance on the code tracing questions, whereas the Alice programmers

50

exhibited a 37.5% decrease in performance. (The prediction was that the code-based, in
this case Python, programmers would prevail on questions involving program flow.)

The results from the questions involving writing code were unexpected (although
the write questions merely required students to recognize the correct programming
solution, not actually author it). The Alice programmers outperformed the Python
programmers in both sessions (not as predicted). In fact, from session one to session two,
the Alice programmers exhibited a 57.7% increase in performance on the code writing
questions, whereas the Python programmers exhibited only a 16.7% increase in
performance.

Both groups of programmers performed similarly in session one on the questions
involving basics, loops (without arrays), functions, and arrays (only, no loops). These
results did not carry over to session two, however. From session one to session two, the
Alice programmers exhibited an increase in performance on the basics, loops (without
arrays), and functions questions, whereas the Python programmers exhibited a decrease
in performance on those questions. Interestingly, the increase in performance
demonstrated by the Alice programmers on the functions questions was an incredible
250.3%!

The overall improvement in performance for the two sessions was comparable,

10.3% for the Alice programmers and10.7% for the Python programmers.

51

CHAPTER 6: RESEARCH QUESTIONS AND HYPOTHESES

6.1 Research Questions

Explorations into the different teaching approaches and programming languages
currently being used to teach introductory object-oriented (OO) programming led to
questions regarding the impact of these approaches and languages on students’ ability to
learn both fundamental and OO programming concepts. Assessing these abilities is best
accomplished using a computer concepts inventory. Since no such tool exists, one was
developed for the purpose of this research. The research questions that follow resulted
from the processes of exploration and tool development described above. They are:

¢ (1: In a field like computer science where there are educational guidelines but no
actual standards, is it possible to create a tool to assess student knowledge of
fundamental and object-oriented programming concepts that is sufficiently “generic”
to be adopted for general use?

* Q 2: What effect does the teaching approach and/or programming language have on
students’ ability to grasp fundamental programming concepts (e.g., assignment,
iteration, functional decomposition, program flow, etc.)?

e Q 3: What effect does the teaching approach and/or programming language have on
students’ ability to grasp specific object-oriented programming concepts (e.g., class
creation, method invocation, object instantiation, etc.)?

* (Q 4: What effect does the teaching approach and/or programming language have on
students’ ability to select the correct code to complete the solution to a programming

problem when provided with multiple options?

52

6.2 Related Hypotheses

The next chapter will describe the design of the experiment conducted to
investigate the research questions posed above. The hypotheses that were tested with
respect to the research questions follow.

The hypothesis that was tested with respect to the first research question (Q 1) was:

e H 1: The computer concepts assessment tool created for use in this study will prove
effective if a majority of its questions discriminate well between high and low scoring
students.

The hypothesis that was tested with respect to the second research question (Q 2) was:

e H 2: Students taught to program using different approaches and/or languages will
exhibit different strengths and weaknesses with respect to their performance on
questions that test their knowledge of fundamental programming concepts.

The hypothesis that wias tested with respect to the third research question (Q 3) was:

e H 3: Students taught to program using the “objects-first/objects-early” approach will
perform better on problems that test their knowledge of object orientation than
students taught to program using the “programming-first” approach.

The hypothesis that was tested with respect to the fourth research question (Q 4) was:

¢ H 4: Students taught to program using highly structured languages will perform better
on code-completion problems than students taught to program using less structured

languages.

53

CHAPTER 7: EXPERIMENTAL STUDY DESIGN

7.1 Purpose of Study
This research study examined the performance of students enrolled in freshman

level programming courses for the purpose of investigating the research questions
outlined in the preceding chapter. It was specifically designed to explore the impact of
different teaching approaches and languages on students’ grasp of fundamental and
object-oriented programming concepts using the assessment tool developed for the study.
7.2 Description of Methodoelogy (General)
7.2.1 Time Dimension

The study was an exploratory study conducted over the course of two quarters
(Drexel University) and one semester (Rowan University).
7.2.2 Units of Analysis

The dual nature of the study necessitated two units of analysis. The first was the
computer concepts inventory developed to assess student learning of fundamental and
object-oriented programming concepts. The second was the teaching approach and/or
programming language used in the introductory programming courses.
7.2.3 Units of Observation (Participants)

The units of observation were students enrolled in freshman level programming
courses at Rowan University in Glassboro, New Jersey, and Drexel University in
Philadelphia, Pennsylvania. Details about the students and the courses from which they

were recruited are presented in Chapter 8.

54

7.2.4 Constructs

The indicators described in the Terms or Components section below were used to
evaluate the effectiveness of the computer concepts inventory and to assess the impact of
the different teaching approaches and languages on students’ grasp of fundamental and
object-oriented programming concepts.

7.2.5 Terms or Components

Standard item analysis techniques for multiple-choice tests were used to evaluate
the quality of the computer concepts inventory. These techniques are discussed in
parallel with the results of the analysis in Chapter 8.

The computer concepts inventory was developed because indicators were needed
to measure the abstract ideas I wished to study. Specifically, I hoped to identify features
of approaches and languages for teaching introductory object-oriented programming that
fostered/hampered students’ ability to:

e Grasp fundamental programming concepts such as assignment, iteration, functional
decomposition, and program flow.

e Grasp specific object-oriented programming concepts such as class creation, method
invocation, and object instantiation.

® Choose the correct code to complete the solution to a programming problem when
provided with multiple options.

A variety of statistical analysis techniques were used to analyze the students’
performance on the computer concepts inventory. These included the repeated measures
ANOVA,; the one-way, between-subjects ANOVA; the Tukey test; and the within-

subjects paired samples -test.

55

Quantitative techniques were also employed to interpret the students’ responses to
the demographic and attitude surveys.
7.2.6 Level of Measurement
The level of measurement was predominantly scalar.
7.3 Description of Methodology (Detailed)
7.3.1 Description
This experiment explored the impact of different teaching approaches and
languages on students’ grasp of fundamental and object-oriented programming concepts
using the assessment tool developed for the study.
7.3.2 Research Questions
* Q 1: In a field like computer science where there are educational guidelines but no
actual standards, is it possible to create a tool to assess student knowledge of
fundamental and object-oriented programming concepts that is sufficiently “generic”
to be adopted for general use?
® Q 2: What effect does the teaching approach and/or programming language have on
students’ ability to grasp fundamental programming concepts (e.g., assignment,
iteration, functional decomposition, program flow, etc.)?
¢ (Q 3: What effect does the teaching approach and/or programming language have on
students’ ability to grasp specific object-oriented programming concepts (e.g., class
creation, method invocation, object instantiation, etc.)?
¢ Q4: What effect does the teaching approach and/or programming language have on
students’ ability to select the correct code to complete the solution to a programming

problem when provided with multiple options?

56

7.3.3 Related Hypotheses

H 1: The computer concepts assessment tool created for use in this study will prove
effective if a majority of its questions discriminate well between high and low scoring
students.

e H 2: Students taught to program using different approaches and/or languages will
exhibit different strengths and weaknesses with respect to their performance on
questions that test their knowledge of fundamental programming concepts.

e H 3: Students taught to program using the “objects-first/objects-early” approach will
perform better on problems that test their knowledge of object orientation than
students taught to program using the “programming-first” approach.

e H 4: Students taught to program using highly structured languages will perform better
on code-completion problems than students taught to program using less structured
languages.

7.3.4 Methodology

Students enrolled in freshman level Java, C++, and Visual Basic programming
courses at Rowan University in Glassboro, New Jersey, and Drexel University in

Philadelphia, Pennsylvania, participated in the study. They were assessed using the

techniques described below and were assured that their performance on study-related

tasks would not adversely affect their course grade in any way.

e At the start of the course, I asked the students to complete three surveys:

o A demographic survey that asked them to provide background information about
their academic level, major, gender, ethnicity, age, programming language

experience, and SAT and ACT math scores.

57
o An attitude survey that asked them to respond to a series of statements designed to

gain insight into their attitudes toward computer science and programming.

o A computer concepts survey that asked them to answer twenty-five multiple-
choice questions designed to assess their knowledge of computer programming
concepts (the computer programming concepts tool described in Chapter 4).

e At the end of the course, I asked the students once again to complete the attitude
survey and computer concepts survey for purposes of comparison.
7.3.5 Data Analysis
The data gathered during the study was analyzed for the purpose of drawing
conclusions regarding the stated hypotheses. The dual nature of the study necessitated
two different forms of analysis:
¢ Item response pattern analysis, item discrimination analysis, and reliability analysis to
evaluate the effectiveness of the computer concepts assessment instrument.
¢ Standard statistical techniques that included the repeated measures ANOVA; the one-
way, between-subjects ANOVA; the Tukey test; and the within-subjects paired
samples #-test to analyze the students’ performance on the assessment instrument.
The above techniques are discussed in parallel with the results of the analysis in Chapter
8.
Quantitative techniques were also employed to interpret the students’ responses to

the demographic and attitude surveys.

58

CHAPTER 8: MAIN STUDY DESCRIPTION AND RESULTS

8.1 Purpose
A research study was conducted to investigate the following research questions:

e Q I: In a field like computer science where there are educational guidelines but no
actual standards, is it possible to create a tool to assess student knowledge of
fundamental and object-oriented programming concepts that is sufficiently “generic”
to be adopted for general use?

e (Q 2: What effect does the teaching approach and/or programming language have on
students’ ability to grasp fundamental programming concepts (e.g., assignment,
iteration, functional decomposition, program flow, etc.)?

e Q 3: What effect does the teaching approach and/or programming language have on
students’ ability to grasp specific object-oriented programming concepts (e.g., class
creation, method invocation, object instantiation, etc.)?

* (Q 4: What effect does the teaching approach and/or programming language have on
students’ ability to select the correct code to complete the solution to a programming
problem when provided with multiple options?

8.2 Participants

Sixty-nine students participated in the study. Sixty-four of these were from

Rowan University in Glassboro, New Jersey. The remaining five were from Drexel

University in Philadelphia, Pennsylvania. The Rowan students were enrolled in courses

in Java (CS 113, CS 114), Visual Basic (CS 141), and C++ (CS 103) during the Spring

2009-2010 semester. The Drexel students were enrolled in courses in C++ (CS 132, CS

59

172, SE 103) during the Spring 2009-2010 quarter. Students in these particular courses
were targeted for recruitment because of the level of the course and the programming
language in which it was taught. Specifically, I sought to recruit students taking
freshman level programming courses that employed a variety of languages and teaching
approaches. I also sought to recruit entire classes where possible in order to insure a
wide range of abilities and a diversity of majors among the student participants.

The above students were recruited by contacting the instructors of the courses of
interest, who then advertised the study on my behalf or who graciously invited me into
their classes so that their students, if willing, could complete my surveys. The CS 113
(Java), CS 141 (Visual Basic), and CS 103 (C++) students represented a substantial
proportion of their respective classes. The CS 114 (Java), CS 132 (C++), CS 172 (C++),
and SE 103 (C++) represented a much smaller proportion of their respective classes.

All of the students who participated in the study were enrolled in courses that
required prior programming experience. Although the prerequisites are not always
enforced, it was clear from the student responses to the demographic survey that most
had programmed before. Languages previously studied included Alice, Basic, C, C++,
Java, JavaScript, and Visual Basic.

The sixty-one students who completed both parts of the study represented a
variety of majors. Fourteen were Computer Science (CS) majors. Twenty-one were
Management Information Systems (MIS) majors; two of the MIS majors had second
majors in Marketing (MKT) and Radio, Television, and Film (RTF), respectively. Nine
were Electrical and Computer Engineering (ECE) majors. Ten were Mechanical

Engineering (ME) majors. Three were Mathematics (MATH) majors; two of the MATH

60

majors had second majors in Physics (PHYS) and Economics (ECON), respectively. Of
the three remaining students, one was a Software Engineering (SE) major, one was a
Liberal Arts (LA) major, and one was non-matriculated (N/A). Interestingly, seven of the
eight students who completed only the first part of the study were MIS majors; the eighth
was a CS major.

Additional information about the research study participants, such as the fact that
only seven out of sixty-one were female, can be viewed in Appendix L.
8.3 Task

Sixty-one of the original sixty-nine participants completed the study, which
consisted of two sessions. The first session was scheduled near the beginning of the
term, while the second session was scheduled near the end of the term. During the first
session, each student was asked to complete three surveys: a demographic survey to
obtain information about his background (Appendix M); an attitude survey to gain insight
into his attitude toward computer science and programming (Appendix N); and a
computer concepts survey to assess his knowledge of computer programming concepts
(Appendix O). During the second session, each student was asked once again to
complete the attitude and computer concepts surveys. Most of the students completed
each session in an hour or less. The sessions were not timed. Each student who
completed the study received a stipend of $15.00.
8.4 Results

Because of the dual nature of the research study, the presentation, analysis, and

discussion of the data gathered is divided into two parts. The first part will focus on the

61

assessment tool. The second part will explore how useful the tool was in assessing
student performance.
8.5 Assessment Tool
8.5.1 Scoring Procedure

The scoring procedure for the version of the computer concepts survey used in the
pilot study employed the algorithm used to compute a raw score on the multiple-choice
portions of the SAT. This algorithm assigns a “1” for each correct response, a “-
1/(number of incorrect responses)” for each incorrect response, and a “0” for each
nonresponse. However, after reviewing additional literature on constructing and scoring
multiple-choice tests (DeAyala, Plake, and Impara, 2001; Ebel and Frisbie, 1991;
Haladyna, 2004), it seemed more appropriate to use an algorithm that assigns a “1” for
each correct response, a “0” for each incorrect response, and a “0.5” for each
nonresponse. In a study that investigated the effect of omitted responses on an
examinee's ability estimate, DeAyala, Plake, and Impara (2001) found that substituting
0.5 for omitted responses yielded ability estimates nearly as accurate as those that used
complete data. They also concluded that treating blank responses as incorrect is probably
the worst practice.
8.5.2 Item Response Pattern Analysis

Multiple techniques exist for evaluating the effectiveness of assessment tools.
One approach for evaluating the quality of tools composed of multiple-choice questions
is to study the item (question) response patterns. Every multiple-choice question exhibits
a response pattern that is either desirable or undesirable. High scoring students tend to

choose correct answers, while low scoring students tend to choose incorrect answers.

62

Research has revealed a pattern to the relationship between distracter (incorrect answer)
choice and overall test score (Haladyna, 2004). Consequently, it is important to examine
both correct and incorrect answer choices. Our starting point for evaluating the
effectiveness of the computer concepts assessment tool constructed for this research is to
determine:

e The proportion of students who answered each question.

¢ The proportion of students who answered each question correctly.

¢ The efficiency of the distracters.

Figure 8-1 shows the results of this analysis for session one of the study. Figure 8-2
shows the results for session two. Only the responses for the 61 students who completed

both parts of the study were used in the analysis.

Response %|Q1 |a2 a3 s Jas Jas Jaz Jas |os Jae Jan lan
A p61] 002 o0z[030 a0 0.20 0.05 013}~ oas] a8l ol 0.25
B 010 o00s[674 o005 013 031 003 061 15 o005 05 o023
€ 0.18 0.20 0.08 0.36 0.02 0.67 0.10 0.12 003 028 0.31
D 020 o013 o003 oss o038 o045 o023 o007 oul 06 003 on
E
Total 0.98 .00 053 097 095 053 098 050 089 095 035 0.0
Response%[Q13 |Q14 |a15 |a1s Jawy Q18 a1 a0 a1 @22 Jaz [aza
A 039 039] o031 o018 ox 628 o028 o052 016 011 015 0.08
B 0.10 0.05 0.13 031 - o3 o007 0.11 0.18 039] 025 0.25 0.20
< 005 o33] o023 o1s] o8 0.31 0.25 0.03 0.18 021" " 038 048
D 043 010 025 0.25 007 023 vas o1s o007 o30] en 0.13
3
Total 097 087 092 039 052 089 0.82 052 080 087 0.89 0387

Correct Response: [:I

Figure 8-1. Proportion of students who chose each question response for session one (pre-test).

63

Response % |Q 1 la2 las a4 las las la7 las as laze |Jann a2
A 0.63] 005 0.10 030 011 0.23 0.10 0.10 051 o0as| oas 0.23
B 015 o1 o] eos 023 025 007l ez 013 o007 o018 o020
c o008 - o.es] o013 0.21 0.30 0.11 0.59 0.15 0.20 0.18 0.28 0.36
o 003 010 005 oas] _osa] p3] o025 oos 010 -pse 002 em
£
Total 0.5 100 098 100 058 098 100 100 093 095 085 093
Response%|Q13 |14 [a1s Ja1s Ja1z a8 |as [a a2z |axz a2 |axn
A 0.44 oasl- 038 0.2 0.23 0.23 0.38 0.41 0.23 0.8 0.21 0.03
B 0.11 0.03 0.16 031 026 020 0.11 0.20 038 016 0.26 0.23
c 0.0[031 0.23 0.26 0.34 0.13 0.16 0.13 0.11 0.20[F “eael pde
Y “o38] o008 018 om o3[oa2s] -vozo] e1s oas[E b3x oo oa
E

Total 0.58 0.92 0.93 0.93 0.97 0.33 0.85 0.90 0.87 0.97 0.93 0.87

Coned Response: l:

Figure 8-2. Proportion of students who chose each question response for session two (post-test).

The rows labeled “Total” show the proportion of students who answered each
question on the test for each of the two sessions. The rose-highlighted cells show the
proportion of students who answered each question correctly. This value is referred to as
the item facility (Elvin, 2004) or p value (Haladyna, 2004). The remaining cells show the
proportion of students who chose distracters (incorrect responses). Although in some
cases the proportions are low, it is important to note that all possible responses, correct as
well as incorrect, were selected at least once. Response E was an option only for
Question 25, which asked students to rate the difficulty level of the test using a Likert-
type scale.

A more detailed breakdown of student responses that considers test score
distribution provides additional information about response patterns for correct as well as
incorrect answers. Student records were arranged in descending order by score, then
divided into four approximately equal-sized groups. For each group, the proportion of

students who chose each of the four possible responses was calculated. Figure 8-3

64

displays the breakdown for a subset of questions and corresponding responses for session
two. These particular questions were chosen as exemplars because their response
patterns represent a variety of patterns typically seen in multiple-choice questions with
four answer choices. (See Appendices D and E for the breakdowns for all 24 questions
and their responses for both sessions.) For each question, the proportion of correct
responses should vary directly with the students’ scores (Haladyna, 2004). For each of
the question’s distracters, the proportion of responses should vary inversely. As we shall

see shortly, however, this is not necessarily the case.

Quartiles per response

Response % [Q5 las [a1 Q2 Q23 l
A 0.03___ . 021 0.16 2.20 0.00 High score
0.02 0.15 0.10] 011 0.05
0.03_ 0.07 0.03 0.7 8.07
0.03 0.08 0.08 2.03 0.10 Low score
B 0.05 0.00 0.02 0.00 0.02
0.05 0.03 0.02 0.02 0.08
0.07 0.05 0.03 0.08 0.07
0.07 0.05 0.05 0.10 0.10
C 0.00 0.00 0.02 0.00° 0.21
0.07 0.05 0.03 0.03 .08
0.08 0.05 0.05 003 "0.08
0.15 .10 0.07 0.07 6,02
D 0.16 .02 0.03 005 000
0.11 0.00 0.07, 0.03 0.02
0.05 0.05 0.08| 0.03 0.02
0.02 0.03 6.02 0.05 0.03
Total 0.98 0.93 0.85 0.90 0.93

Correct Response: :]

Figure 8-3. Proportion of session two students who chose

. each response for Questions 5, 9, 19, 20
and 23, divided into four groups by score (high to low).

65

Desirable response patterns for correct answers are exhibited by questions 5, 9,
20, and 23. For each of these questions, the proportion of correct answers decreases
overall as the students’ scores decrease. Question 19, on the other hand, exhibits a
correct response pattern that makes no sense. According to the numbers, a greater
proportion of middle scoring students than high scoring students answered the question
correctly!

Desirable response patterns for incorrect answers are exhibited by Question 5,
option C; Question 9, options B and C; Question 19, options B and C; Question 20,
options B and C; and Question 23, options A and B. For each of these response options,
the proportion of incorrect answers increases overall as the students’ scores decrease.
The remaining distracters exhibit response patterns that are either unchanging, or
changing in ways that may be difficult to interpret. For example, Question 5, options A
and B, and Question 20, option D, exhibit response patterns that are virtually unchanging
across score groups. In general, response patterns that display no orderly relation
between the distracter and students’ test scores should be improved or replaced because
they are not working as intended.

Question 19, option A, on the other hand, exhibits a response pattern that more
closely resembles one desired for a correct answer than for an incorrect answer. Indeed,

more students chose option A than the correct answer, option D.

66

Question 19 and its answer choices appear below:

19) Which of the following statements about recursion is always true?

a) A function that implements a recursive algorithm consists of two parts: a base case
and a recursive step.

b) Recursion, unlike iteration, can never occur infinitely.

¢) Any programming problem that can be solved either recursively or iteratively can be
solved more efficiently using recursion.

d) Any programming problem that can be solved recursively can also be solved
iteratively.

One possible explanation for this behavior relates to the topic the question
addresses and an example frequently used to illustrate it. The topic is recursion; the
frequently-used example is the mathematical function factorial. Implemented
recursively, factorial has two parts: a base case that it solves by returning “1,” and a more
complex case that it solves by calling itself until it is called to solve the base case.
Question 19 asks “Which of the following statements about recursion is always true?”’
Option A states “A function that implements a recursive algorithm consists of two parts:
a base case and a recursive step.” It is not surprising that students whose experience with
recursion is limited to simple examples such as factorial selected this response. In
retrospect, the question turned out to be too difficult for the students, as subsequent
analyses will show.

The above tabular techniques provide a glimpse into desirable and’ undesirable
test question response patterns. However, in order to formally evaluate test question

performance, statistical techniques are required.

67

8.5.3 Item Discrimination Analysis

The next step is to carry out item (question) discrimination analysis to formally

evaluate the overall performance of the computer concepts assessment tool as well as the

performance of the individual questions of which it is composed (Ebel and Frisbie, 1991;

Elvin, 2004; Haladyna, 2004). Unlike the above analyses, this process requires using the

spreadsheets for the pre-test and post-test in which the students’ letter responses have

been converted to numbers (as described in the scoring procedure). The steps are as

follows:

D

2)

3)

4)

5)

6)

Sort the students’ records in descending order by score.

Compute the proportion of students who answered each question correctly. As
mentioned earlier, this value is the item facility, or p value.

Identify upper and lower groups separately. The upper group is the highest scoring
27% of the whole group. The lower group is the lowest scoring 27% of the whole
group.

For each question, count the number of students in the upper group who chose the
correct response. Divide this number by the size of the group. This value is the item
facility for the upper group.

Compute the iterﬁ facility for the lower group by following steps similar to those in
step 4.

Subtract the item facility for the lower group from the item facility for the upper
group. This value is the item discrimination (also referred to as item-discrimination

index or index of discrimination).

68

7) For each question, add the counts for the correct number of responses for the upper
and lower groups. Divide this sum by the total number of students in the two groups.
This value is the estimated index of item difficulty.

8) Compute the average score and standard deviation of the test. These values can be
easily calculated using functions built into spreadsheet programs such as Microsoft
Excel.

9) Determine the reliability of the test. Reliability is calculated here using one of two
widely accepted formulas developed by Kuder and Richardson (1937), K-R21.

Formula K-R21 is:

Lk [I_Y(k—}?)}

k-1 ks?

where:

r = reliability coefficient

k = number of test items

X = mean test score

s = standard deviation of test scores
K-R21 provides a conservative estimate of a test’s reliability. K-R20, Kuder and
Richardson’s more complex formula for estimating reliability, cannot be used in this

case because it is not applicable to tests that employ weighted scoring.

69

10) Estimate the standard error of measurement of the test. Standard error of

measurement is calculated using the following formula:
Sgp=SyNl-r
where:

sg = standard error of measurement
sy = standard deviation of test scores

r = reliability coefficient

The results of the item discrimination analysis for the pre-test and post-test appear
in Appendices F and G, respectively. Only the scores for the 61 students who completed
both parts of the study were used in the calculations. Figure 8-4 below displays the
results for a subset of questions that, in general, performed reasonably well on both the
pre-test and post-test. The item facility (total group, top 27%, bottom 27%), item
discrimination, and estimated index of item difficulty are clearly labeled.

It is important to note that while index of item difficulty is sometimes measured
by calculating the proportion of test-takers who answer a question incorrectly, this
researcher adopts the approach of Ebel and Frisbie (1991) who measure item difficulty by
calculating the proportion of test-takers who answer a question correctly. As a result,
higher values indicate easier questions and vice versa. Because the index of item
difficulty reflects the ability of a particular group of test-takers, and not just the content of

the question, it is more appropriately referred to as estimated index of item difficulty.

70

Pre-test
Question Number 101 Q2 Q3 Q4 as as a7 Qs as Qi
ttem Faili
temfaciity¥otal | o cor] ososl 0738 o0ss| oa61] ouse| ocsml oser] oasml osss] oae3
1tem Facility Top
2% 087s| 0938l coss| osss| osas] o7s| o9sal osvs] osi3 o7so] oses
Iltem Facility Sottom
7% 0313 o7sol os00l ocoo] oass] oes3] os3sl ocazs 0.125
ftem Discrimination| o ey 0.938| oems] oam ossel os00l 0u3m 0.438
Estimated index of]
Hem Ditficulty 055) 98sal o713] o03a] oa0s] o008 06ssi 0656 0.344
Post-test
Question Number Q1 Q2 Q3 Q4 s {033 Q7 [#3] Q9 Q10 Q13
It Facility T
emfaclityTotal | ssol oews| ooosi ooss| oasa] eses| osse| osl osvs| oss oams
item Facility Top
27% 0.875, 1.000] 0.938, £.688, 0,635 B.875, £.933 0,938 0,875, 0.813, 0.7590,
item Facility Bottom
7% 0438l oscol osocol oos3l 0083 0063] 0a7s] oarsl oalz 0.188
tem Discimination; asl oso0| oamsl ozl essdls esn)l 036yl esesl | ese 0583
Estimated index of
Item Ditticulty 06560 0750 o070 037s| o03sa] oges| osse| oesel 0s9a] osssl gass
Question Number 101 laz laz a4 [as las Q7 [as las aw _ fan
Question Catepory Bosics togical expressions Conditionols Foripops

Index of Distrimination Scale:

very good 0,40 and up
Reasaradly good 0.30100.39
Marginal 77 0.26t6 0.23
Poor Selow 0.13

Figure 8-4. Session one (pre-test) and session two (post-test) item discrimination analysis for
questions 1 through 11.

The most important values to attend to here are those for item discrimination.
These values indicate how well questions discriminate between high and low scoring
students. Since the goal of an effectively functioning test question is to discriminate
between high and low scorers, it should go without saying that the higher these values are
the better. The chart at the bottom shows a scale that is normally suitable for evaluating

test question effectiveness based on item-discrimination indices (Ebel and Frisbie, 1991).

71

Figure 8-4 shows nine questions that exhibit very good item-discrimination
indices for both the pre-test and the post-test: 1, 3 through 9, and 11. Questions 2 and 10,
on the other hand, performed poorly on the pre-test, but respectably on the post-test.
Questions that consistently perform poorly must be rejected or revised. Question 10’s
reasonably good performance on the post-test indicates that it may still be subject to
improvement.

Figure 8-5 shows ten questions that exhibit a variety of changes in the item-
discrimination indices from the pre-test to the post-test. The item-discrimination indices
for Questions 13, 14, 15, and 24 are very good for the pre-test. Question 14, however,
exhibits only marginal performance for the post-test. The item-discrimination indices for
Questions 16, 21, and 22 are reasonably good for the pre-test and very good for the post-
test. The remaining three questions show significant improvement in performance
between the pre- and post-tests. Questions 18, 20, and 23 all performed poorly on the
pre-test. On the post-test, however, Question 18’s performance was reasonably good,

while that of Questions 20 and 23 was very good.

Pre-test

Nuestion Number

Q13

Q18

Q16

Q0 axn

Q23

Q24

Rem Facility Total

0.326, 0.328]

0.311

0,230

4.3193

8.377

0459

Iern Facility Top
27%

.62>

0,250

0,563

0.373]

1tem Faality Bottom
2%

2.125 G125

1tam Distriminalion

0863 0438

Estimated index of
item Difliculty

0.506 .34

e

Post-test

Question Numbes

Q13

Q14

Qi8

Q20 023

Q22

Q23

Q24

ttem Facility Yotal

0.377 £311

0,262

0,279

0,410

0.377

0.328;

0,393

0.3%3

tess Facility Top
21%

0.625 0.318

0.750

5,438

£.8131

0,750

0.813;

0.813

0875

em Facility Bottom
27%

tem Discrimination

Estimated Index of
ttem Dithiculty

0.063

6.250

2.062

6.125

0.688

o.688]

2.125

0.500]

£,756]

0.963

“rss]

358

D408

0.408

0469

€.500

0.438

0.433

0.500

Question Number

Qi3

[a1s

a1s

las

3 E]

20

a2

Q22

fa2:

Jaza

Question Category

Whie loeps

Furictions

Software

Ergincenny

Recursion

Classes and objects

index of Diserimination Scale:
Very good
Reasonably good
Marginal

Poor

0.46 and up
8.36t0 0.39
0.20100.29
Below 0.19

Figure 8-5. Session one (pre-test) and session two (post-test) item discrimination analysis
for questions 13 through 16, 18, and 20 through 24.

72

Figure 8-6 shows the results of the item discrimination analysis for the remaining

three questions in the computer concepts survey. Basically, Questions 12, 17, and 19 ali

performed poorly on both the pre-test and the post-test. However, Question 17’s item-

discrimination index increased from 0.00 on the pre-test to 0.19 on the post-test, placing

it very close to the minimum cutoff for marginal performance (0.20). I would therefore

be inclined to include an improved version of this question in future versions of the test.

Questions 12 and 19, on the other hand, would have to be revised significantly or

73
dropped. A negative item-discrimination index (e.g., Pre-test, Question 12) is
particularly bad because it indicates that more low scoring students got the question right
than high scoring students. A zero item-discrimination index (e.g., Post-test, Question

12) is almost as bad because it indicates that the question does not discriminate between

high and low scoring students.

Pre-test
Question Number Q32 Q17 Q19

ity Yota)
ftem Facility Yot o230 oae1] ouso
Item Facitity Top
27% o1s8] 0375l oam;

tem Facitity Bottom
27% 0.3313 0.375, 0,125

item Discrisnination

Estimated index of H

Item Difficulty o0l sl oy

Questhsn Humber (€112 517 39 i

Question Catugory Aoy FurnclionsiRecursion
prestion Catoge relion
B w/o toop ’

Post-test
Question Number |12 Q7 119

Hen Factlity Total N
Q.197 0.252 0197

Item facitity Top

27% 0.325 0.37% 0.388
1tem Facitity Bottoin
0% £1.125 £.183 0,063

Fem Discriminatio

{Estimated Index of
e Ditticulty 0125

Question Number |12 a7 ats |
LAsray
wi'o loop

Eungtons [Recuesion

Question Category

fndes of Disceimination Scale:

very good C.80 300 up
Rassonably good £.30100.39
Marginal $.20te .22

Beiow 6.1%

i Pooe

Figure 8-6. Session one (pre-test) and session two (post-test) item discrimination analysis for
questions 12, 17, and 19.

74

To explain the variation in the item-discrimination indices, the way they are
calculated will be reviewed. Specifically, item-discrimination index is computed by
subtracting the item facility for the lower group from the item facility for the upper
group. (Recall that item facility 1s the proportion of students in a particular group who
answered each question correctly.) So, for example, if the performance of the upper
group on a specific question improved, while that of the lower group declined or stayed
the same, the item-discrimination index would increase. If, on the other hand, the
opposite occurred, the item-discrimination index would decrease. Factors influencing the
performance of the individual students who make up the different groups may include
learning, motivation, stress, fatigue, and so on.

In the event that the above discussion has led the reader to believe that a question
must perform well every time a test is administered, that is not the case. The purpose of
all the comparisons was to show how (and why) question performance can change for
better or worse from one administration of a test to the next. If, after repeated
administrations, a question performs reasonably well most of the time, it should be
retained. If, on the other hand, its performance is poor or inconsistent, it should be
revised or replaced. The whole point of item discrimination analysis is to determine
whether or not a test and the questions of which it is composed provide us with useful
information about student performance. A question that performs poorly or

inconsistently is useless because it provides us with no information.

Figures 8-7 and 8-8 below report reliability, average score, standard deviation,

and standard error of measurement statistics for the pre-test and post-test. A reliability

coefficient of 0.60 or higher is considered sufficient for exploratory research; 0.70 or
higher is considered adequate; and 0.80 or higher is considered good (Garson, 2010).
Reliability and standard deviation are higher for the post-test, while average score and
standard error of measurement are lower. A decrease in average score accompanied by
an increase in reliability may seem “odd” until one considers the relationship between
reliability, variance, and item-discrimination index. Score variance (standard deviation
squared) 1s directly proportional to the square of the sum of the item-discrimination
indices (Ebel and Frisbie, 1991). The reader will recall from the above discussion that
the item-discrimination indices increased overall from the pre-test to the post-test.
Consequently, variance also increased. It is generally true that the greater the score

variance, the higher the reliability (Ebel and Frisbie, 1991).

Reliabili
Y 0.568
Average Score
11.402
Standard Deviation
3.626
Standard Error of
Measurement 2.382

Figure 8-7. Session one (pre-test) reliability, average score, standard deviation, and standard error of
measurement statistics for questions 1 through 24. Reliability is calculated using K-R21.

Reliabili iabili
ty 0.749 Reliability 0.786
Average Score
e 10.730 Average Score 10.230]
Standard Deviation Standard Deviation
4.586 4.682
Standard Ervor of Standard Error of
Measurement 2.297] Measurement 2.166

Figure 8-8. Session two (post-test) reliability, average score, standard deviation, and standard error of
measurement statistics for questions 1 through 24 (left); and questions 1 through 24, minus
questions 12 and 19 (right). Reliability is calculated using K-R21.

75

76

Figure 8-8 merits some additional discussion. As the caption indicates, the chart
on the left reports the reliability, average score, standard deviation, and standard error of
measurement values obtained when all 24 questions in the computer concepts survey are
included in the calculations. The chart on the right, however, reports the values obtained
when Questions 12 and 19 are excluded from the calculations. This was done to see what
impact dropping two of the worst performing questions on the survey would have on the
overall reliability of the test. Since dropping these questions also resulted in the two
lowest item discrimination values being excluded from the calculations, reliability rose,
as the discussion in the preceding paragraph suggested it would.

A student’s observed score on a test consists of two components, a true score and
an error score (Ebel and Frisbie, 1991; Elvin, 2004; Garson, 2010). Since these scores
are not known, a method has been devised to estimate the standard deviation of the
hypothetical error scores. This estimated value is called the standard error of
measurement. It is calculated from the standard deviation and reliability coefficient of
the observed scores using the formula provided in step 10 of the procedure for item
discrimination analysis. The values for standard error of measurement and reliability are
inversely related: as standard error of measurement goes down, reliability goes up, and
vice versa. This is because reliability is the ratio of the true score to the observed (true +
error) score. Therefore, the smaller the error score, the closer the observed score will be

to the true score.

77

The values displayed in Figures 8-7 and 8-8 exemplify the inverse relationship of
reliability and standard error of measurement. In all cases, an increase in reliability was
accompanied by a decrease in standard error of measurement.

As a second measure of the assessment tool’s reliability, Cronbach’s alpha was
computed using PASW Statistics 18 (2010). Unlike K-R20, Cronbach’s alpha can be
used to estimate reliability for tests that employ weighted scoring (Ebel and Frisbie,

1991). The formula is:

2

S

wo k|2
k—1 s2

where:

& = alpha coefficient

k = number of test items

s2

; =variance of a single test item

2 . .
Zs,— = sum of variances for all test items

2 .
s =variance Of test scores

The figure below displays the results of the computations.

Reliability Statistics

Cronbach's
Alpha Based on
- Cronbach's | Standardized
Alpha items N of items |Comment

£.652 0.646 24|Session 1 values: Questions 1 — 24

0.787 0.779 24|Session 2 vaives: Questions 1 ~24
Sessipa 2 volyes: Questions 1 - 24,

0.816 £.815 22|minus questions 12 ond 15

Figure 8-9. Cronbach’s alpha values for session one (pre-test) and session two (post-test).

78

Interestingly, the Cronbach’s alpha values are all higher than the K-R21 reliability values.
K-R21, however, may underestimate the K-R20 reliability coefficient depending on the
average scores of the individual test items. Since the formulas for Cronbach’s alpha and

K-R20 are similar, the reliability estimates generated by each will also be similar.

Section 4.5.4 discussed steps already taken to demonstrate the “content validity”
of the computer concepts assessment tool (Sections 8.5.2, 8.5.3), as well as steps in
progress to demonstrate its “construct validity.” Several different types of evidence
provide support for content validity: intrinsic characteristics, study of question responses,
expert review. Content validity is intrinsic, since the tool is based on the core concepts of
the Programming Fundamentals knowledge area defined by the 2008 ACM/IEEE
curricular guidelines (CS2008 Review Taskforce, 2008).

Haladyna (2004) makes a case for the importance of collecting evidence to
validate both test scores and the question responses aggregated to form them. Section
8.5.2 analyzed the patterns for correct responses and incorrect responses (distracters) to
gather evidence in support of question response validity. Analysis showed that all
possible responses, correct as well as incorrect, were selected at least once, the desired
result. Next, student records were arranged in descending order by score and divided into
quartiles to examine the relationship between answer choice and overall test score.
Ideally, the proportion of students choosing correct answers should be directly related to
their scores, while the proportion choosing distracters should be inversely related. The
desired relationship between correct responses and scores held for about 67% of the
questions for the pre-test and 75% of the questions for the post-test. Although I am

aware of no “magic number,” this would seem to be a respectable showing. Between the

79

pre-test and the post-test, at most 50% of the distracters exhibited the desired inverse
relationship between incorrect responses and scores, indicating that many of the
distracters need to be improved or replaced.

Section 8.5.3 analyzed the overall performance of the computer concepts
assessment tool as well as the performance of its individual questions to gather additional
evidence in support of question response validity. Analysis showed that the assessment
tool performed well overall at both the pre- and post-test administrations based on the
item (question) discrimination values for the individual questions. Specifically, item
discrimination ratings were either “very good” or “reasonably good” for 21 out of 24
questions.

Finally, I have obtained feedback on the computer concepts assessment tool from
several of the computer science faculty whose students participated in the study. Faculty
were asked to complete a review form (Appendix P) that asked them to: 1) answer the
question; 2) decide whether the question reflects fundamental programming concepts that
students should know after completing an introductory course in object-oriented

2% &

programming; 3) rate the quality of the question on a scale of “do not use again,” “use

2% &

again with major changes,” “use again with minor changes,” or “use again as is.”
Reviewers were encouraged to indicate how questions should be changed or why they
should not be used again, if appropriate. Feedback has been largely positive. One
reviewer indicated that 19 out of 24 questions reflected basic concepts and should be used

again “as 1s” or with “minor changes.” A second reviewer responded similarly, but

specified different questions that should be changed or omitted.

80

Construct validity is more difficult to demonstrate than content validity.
Exploratory factor analysis is a statistical technique that can be used to determine, based
on students’ responses, whether the questions that make up an assessment tool group into
constructs the tool is intended to measure (Hoegh and Moskal, 2009). Preliminary factor
analysis extracted nine components. Since the last two components consisted of only one
question each, the factor analysis was re-run without those two questions. Seven
components were extracted, three of which were readily comprehensible. Questions 16,
20, 23, and 24 loaded on a factor I labeled “methods and functions.” Questions 2, 3, and
5 loaded on a factor I labeled “mathematical and logical expressions.” Questions 7, 9,
and 11 loaded on a factor I labeled “control structures.” Questions 4, 6, and 8 possibly
load on a “questions with conditions” factor, but that would overlap with the “control
structures” factor. Such overlap is not surprising, however, since control structures

contain conditions. Figure 8-10 shows the factors and their question loadings.

Factor
; Mathematical uestions
Question Methods and | and logical ° with Control

functions expressions | conditions sfructures
a6 733

Q24 722

Q23 21

Q20 632

Q2 850

Q3 - 769

Qs 593|

Q8 814

Q4 542
Qs 353

Qi ! . s
Q7 674
Q9 511

Figure 8-10. Factors representing the construct “understanding of fundamental programming
concepts,” extracted through principal component analysis.

Ideally, all assessment tool questions should group into clearly defined factors that

81

represent the construct “understanding of fundamental programming concepts,” but that

will have to be a matter for future work.

82

8.6 Student Performance
8.6.1 Score Distribution Analysis

The figure below displays the score distributions for the 61 students who
completed both parts of the study. Both resemble normal distributions. The post-test
curve, however, is somewhat flatter than the pre-test curve. This is because the post-test
mean 1s slightly lower than the pre-test mean, and the post-test scores are more widely
distributed than the pre-test scores. Although inspection of the numeric data suggested a
normal spread, it seemed prudent to confirm this visually since many statistical tests

assume that data is normally distributed.

Session 1 {Pre-test} and Session 2 {Post-test) Scores

0420 o ey e e g
: v ' Pre-test Scores Mean Score:
11.5303
Standard
Deviation:
3.626
N=61

6100 -

Post-test Scores

G059

¥ Values

Post-test:
. Mean Score:
: 10,730

standard

Y Doviation:
\\ 4.586

N=61

2.049

D20 oo

00 20 40 80 50 L0 120 M40 L88 180 200 220 240

Score

Figure 8-11. Session one (pre-test) and session two (post-test) scores for the 61 students who
completed both parts of the study.

83

It seemed wise to determine definitively whether or not the difference between the
pre-test and post-test means was significant. A within-subjects paired samples t-test
failed to reveal a statistically reliable difference between the mean pre-test (M = 11.40, s
= 3.63) and mean post-test (M = 10.73, s = 4.59) scores of the students: #(60) = 1.65, p =
.11, a =.05. The importance of this finding will become apparent in subsequent sections
which examine student performance by language group.

One of the goals of this research is to determine the possible impact of different
teaching languages (Java, Visual Basic, etc.) on students’ learning of fundamental
programming concepts. Therefore, the next step is to analyze their performance based on
the language they were programming in when they participated in this study. The
programming languages of interest are Java, Visual Basic, and C++.

8.6.2 Mean Scores Analysis by Language Group

This section begins an exploration into the research question:

e Q 2: What effect does the teaching approach and/or programming language have on
students’ ability to grasp fundamental programming concepts (e.g., assignment,
iteration, functional decomposition, program flow, etc.)?

and its accompanying hypothesis:

e H 2: Students taught to program using different approaches and/or languages will
exhibit different strengths and weaknesses with respect to their performance on
questions that test their knowledge of fundamental programming concepts.

Students were divided into groups based on the language they were studying in
the programming course they were taking when they participated in the study. The

students had been recruited from eight different programming classes: two teaching Java,

34

two teaching Visual Basic, and four teaching C++. It seemed sensible to begin by
looking at overall performance before focusing attention on student performance with
respect to different programming concepts (e.g., conditionals, functions, etc.). The first
step was therefore to calculate and compare the mean scores of the three different
language groups (Java, Visual Basic, C++) on the pre-test and post-test.

Figure 8-11 displays the pre-test and post-test means broken down by language
category. The Java students and the C++ students appear to have performed similarly on
both the pre- and post-tests. The Visual Basic students, on the other hand, consistently

performed more poorly than the other two groups of students.

Session 1 (Pre-test) and Session 2 {Post-test) Means

14.000 12962
12.500 12.192

12.000

10.000 -

8.000

6.000 B Pre-test

4.000 -t B Post-test

Mean of weighted Scores

2.060 -+

0.000 -

Java Visual Basic C++

Llanguage Category

Figure 8-12. Mean scores for session one (pre-test) and session two (post-test) by language
group where: Java N = 13, Visual Basic N = 22, C++ N = 26, Total N = 61.

85

To further investigate what Figure 8-11 suggests, statistical analysis was carried
out to test whether or not language of instruction affects student performance. A one-
factor, within-subjects analysis of variance (ANOVA) was performed to test if any of the
language category means were significantly different. A conservative post hoc test, the
Tukey test, was also used to make pair-wise comparisons among the means.

The tests of between-subjects effects for the one-factor, within-subjects analysis
of variance (ANOVA) revealed a reliable effect of language category on the repeated
measure, score: F(2, 58) = 8.58, p < 0.01, MS,,,,, = 23.23, a0 = 0.05. Partial eta squared =
0.23, which is considered a large effect (Kinnear and Gray, 2010). The Tukey test was
used next to determine which pairs of means were significantly different.

The Tukey test revealed significant differences between two of the three pairs of
means at the 0.05 o-level. The test confirmed differences between the Visual Basic mean
and the means for Java and C++; the difference between the Java and C++ means is
insignificant. The p-values for the differences between the Visual Basic mean and those
for Java and C++ are 0.02 and less than 0.01, respectively; the p-value for the difference
between the Java and C++ means is 1.00. The differences between the Visual Basic
mean and those for Java and C++ are 3.43 and 3.91, respectively; the difference between
the Java and C++ means is 0.48.

The results of the analysis presented above confirm that language of instruction
does indeed affect overall student performance in introductory programming courses. It
may be that highly structured languages like Java and C++ promote better overall
learning than less structured languages like Visual Basic. It may also be that the interface

design aspect of Visual Basic programming detracts from student learning of

86

fundamental concepts. I have learned through personal experience teaching introductory
programming using Visual Basic that students seem to like the graphical aspect.
However, it may be that the time spent learning to create graphical user interfaces (GUIs)
would be better spent learning the fundamental programming constructs needed to

implement them.

Figure 8-11 also showed a decrease in mean scores for the Java and Visual Basic
students and an increase in mean scores for the C++ students from the pre-test to the
post-test. Although not all changes appeared to be significant, a test to determine the
difference (if any) between the pre- and post-test means was indicated. A within-subjects
paired samples ¢-test was performed to test if the pre-test and post-test means within each
of the different language groups (Java, Visual Basic, C++) were significantly different.

The paired samples #-test revealed a significant difference between the pre-test
and post-test means for only one of the three language groups. The t-test confirmed a
difference between the pre- and post-test means for the Visual Basic students; the
difference between the pre- and post-test means for the Java and C++ students is
insignificant. Specifically, a paired samples z-test revealed a statistically reliable
ditference between the mean pre-test (M = 9.82, s = 3.06) and post-test (M =7.52, s =
2.12) scores of the Visual Basic students: #(21) = 3.29, p < 0.01, a = 0.05. However, the
paired samples test failed to reveal a statistically reliable difference between the mean
pre-test (M = 12.50, s = 4.03) and post-test (M = 11.69, s = 5.62) scores of the Java

students: #(12) = 0.92, p = 0.37, a = 0.05. The test similarly failed to reveal a statistically

87

reliable difference between the mean pre-test (M = 12.19, s = 3.52) and post-test (M =
12.96, s = 4.10) scores of the C++ students: #(25) =-1.59, p = 0.12, a = 0.05.

As the above analysis confirmed, the performance of the Java and C++ students
remained fairly constant over the course of the research study, while the performance of
the Visual Basic students declined. One possible explanation for this result is the
approach used to teach the course. The prerequisite course introduced the students to
Visual Basic programming using the typical lecture/lab approach in which they were
assessed at regular intervals to reinforce their learning. The follow-up course — the
course the students were taking when they participated in this study — used a project-
based approach. According to the course syllabus, 90% of the student’s grade was based
on the design and implementation of a small-scale enterprise system. Although the
project was intended to cover all basic and object-oriented programming concepts, it may
be that a semester-long project was less effective at reinforcing student learning of
fundamental concepts than exams, quizzes, and lab assignments given regularly
throughout the course.

Examination of how students responded to different questions on the attitude
survey, particularly those addressing the usefulness of programming in their future work,

may provide some insight into this resuit.

88

8.6.3 Topic Area Analysis by Language Group

To explore the impact of language of instruction on student performance with
respect to different programming concepts, questions were grouped into the categories
used during the item discrimination analysis (basics, logical expressions, conditionals,
and so forth). For each student, a score was computed for each question category by
adding the scores of the questions that made up the category. (The maximum score for
each category is equal to the number of questions in the category: for example, “3” for
“basics” and “3” for “conditionals.”) The mean scores for the question categories were
calculated for the pre-test and the post-test. One-factor, within-subjects analysis of
variance (ANOVA) tests were then performed to determine if language of instruction
affected student performance on the fundamental programming concepts represented by
the different question categories.

Figures 8-12 and 8-13 display the pre- and post-test means for the two question
categories on which language of instruction had a significant effect, “basics” and “logical

expressions.”

Pre- and Post-test Means for "Basics'
Questions

Pre-test

1.000 - B Post-test

Mean of "Basics™ Scores
-
ur
o
<)
.

0.500 -

0.000

Java Visual Basic Cre

Language Category

Figure 8-13. Mean “basics” scores for pre-test and post-test by language group where:
Java N = 13, Visual Basic N =22, C++ N =26, Total N = 61.

Pre- and Post-test Means for "Logical
Expressions” Questions

3.000

2.500 e

2.000

1.500

1.3851.385 13091385

1.000

0.500 -+

Mean of "Logical Expressions” Scores

0.000 -

Java Visual Basic C+

tanguage Category

Figure 8-14. Mean “logical expressions” scores for pre-test and post-test by language group
where: Java N = 13, Visual Basic N =22, C++ N =26, Total N = 61.

950

The tests of between-subjects effects for the one-factor, within-subjects analysis
of variance (ANOVA) revealed a reliable effect of language category on the repeated
measure, “basics” score: F(2, 58) = 16.75, p < 0.01, MS,,,r =0.72, o = 0.05. Partial eta
squared = 0.37, which is considered a large effect (Kinnear and Gray, 2010). The Tukey
test revealed significant differences between the Visual Basic mean and the means for
Java and C++ at the 0.05 o-level; the difference between the Java and C++ means is
insignificant. The p-values for the differences between the Visual Basic mean and those
for Java and C++ are less than 0.01 and less than 0.01, respectively; the p-value for the
difference between the Java and C++ means is 0.14. The differences between the Visual
Basic mean and those for Java and C++ are 0.69 and 0.99, respectively; the difference
between the Java and C++ means is 0.31.

The tests of between-subjects effects for the one-factor, within-subjects analysis
of variance (ANOVA) also revealed a reliable effect of language category on the repeated
measure, “logical expressions” score: F(2, 58) = 5.31, p = 0.01, MS,,,,r = 1.66, oo = 0.05.
Partial eta squared = 0.16, which is considered a large effect (Kinnear and Gray, 2010).
The Tukey test once again revealed significant differences between the Visual Basic
mean and the means for Java and C++ at the 0.05 o-level; the difference between the
Java and C++ means is insignificant. The p-values for the differences between the Visual
Basic mean and those for Java and C++ are 0.01 and 0.01, respectively; the p-value for
the difference between the Java and C++ means is 0.90. The differences between the
Visual Basic mean and those for Java and C++ are 0.82 and 0.78, respectively; the

difference between the Java and C++ means is 0.04.

91

These results are particularly disturbing, since assignment, mathematical
operations, and logical expressions are fundamental constructs upon which all other
programming constructs are based. Without a firm grasp of the basics, a student cannot
begin to understand conditionals, loops, functions, classes, and so forth. Unfortunately, it
is almost impossible to build a computer program that does anything useful without

employing these more advanced structures.

The remainder of this section explores the research question:

¢ Q 3: What effect does the teaching approach and/or programming language have on
students’ ability to grasp specific object-oriented programming concepts (e.g., class
creation, method invocation, object instantiation, etc.)?

and its accompanying hypothesis:

e H 3: Students taught to program using the “objects-first/objects-early”” approach will
perform better on problems that test their knowledge of object orientation than
students taught to program using the “programming-first” approach.

Figure 8-14 displays the pre- and post-test means for the “classes and objects”

question category.

92

Pre- and Post-test Means for "Classes &
Objects” Questions

3.000

2.500

2.000

1.500

N Pre-test

1.000 - @ Post-test

Mean of "Classes & Objects” Scores

Java Visual Basic C++

Language Category

Figure 8-15. Mean “classes and objects” scores for pre-test and post-test by language group
where: Java N = 13, Visual Basic N =22, C++ N =26, Total N = 61.

A one-factor, within-subjects analysis of variance (ANOVA) was performed to
determine if language of instruction affected student performance on the “classes and
objects” questions. The tests of between-subjects effects for the one-factor, within-
subjects ANOVA failed to reveal a reliable effect of language category on the repeated
measure, “classes and objects” score: F(2, 58) = 0.98, p = 0.38, MS..,r = 1.76, a0 = 0.05.

Figure 8-14 showed a decrease in the mean “classes and objects” scores for the
Visual Basic students and an increase in the mean “classes and objects” scores for the
Java and C++ students. To determine if the pre- and post-test “classes and objects”
means within any of the language groups were significantly different, within-subjects
paired samples ¢-tests were performed. The results were only significant for the C++ and

Visual Basic students:

93
o C++:

o A paired samples #-test revealed a statistically reliable difference between the
mean pre-test (M = 0.92, s = 1.13) and post-test (M = 1.39, s = 1.30) “classes and
objects” scores of the C++ students: #(25) =-2.74, p = 0.01, a = 0.05.

* Visual Basic:

o A paired samples #-test revealed a statistically reliable difference between the

mean pre-test (M = 1.32, s = 1.17) and post-test (M = 0.55, s = 0.60) “classes and

objects” scores of the Visual Basic students: #(21) = 2.94, p = 0.01, a = 0.05.

The one-factor, within-subjects ANOVA failed to show that language of
instruction affects student performance on questions addressing the object-oriented
concepts “classes and objects”. However, the z-tests demonstrated that there were
performance differences within two of the three language groups. Although nothing
definitive can be said about the impact of teaching approach and/or programming
language on students’ ability to grasp object-oriented concepts, it is worth noting that, of
the three groups of students, the Java students performed the most consistently on the
“classes and objects” questions throughout the study. (The mean pre-test “classes and
objects” scores for the Java, Visual Basic, and C++ students are 1.23, 1.32, and 0.92,
respectively; the mean post-test scores are 1.54, 0.55, and 1.39, respectively.) Members
of the Rowan Computer Science faculty use BlueJ, a novice programming environment
that supports the “objects-first” approach, to introduce students to Java programming. It
may be that being introduced to Java using this approach has affected the students’

performance with respect to the “classes and objects” questions.

8.6.4 Code-Completion Analysis by Language Group

This final section explores the research question:

¢ Q4: What effect does the teaching approach and/or programming language have on

94

students’ ability to select the correct code to complete the solation to a programming

proble

m when provided with multiple options?

and its accompanying hypothesis:

* H4: Students taught to program using highly structured languages will perform better

on code-completion problems than students taught to program using less structured

languages.

Figure 8-15 displays the pre- and post-test means for the “code-completion”

question ¢

ategory.

Pre- and Post-test Means for "Code-
Completion" Questions
& 4‘000 S SO 3615
3 3.500
i 3.000 -
2
@ 2500 -
[=3
g 2.000 -+
5 8 Pre-test
g 1.500 +
w B Post-test
o 1.000 -
=}
§ 0500
z
0.000
Java Visual Basic Cet
Language Category
Figure 8-16. Mean “‘code-completion” scores for pre-test and post-test by language group

where: Java N = 13, Visual Basic N =22, C++ N =26, Total N = 61.

95

A one-factor, within-subjects analysis of variance (ANOVA) was performed to
determine if language of instruction affected student performance on the “code-
completion” questions. The tests of between-subjects effects for the one-factor, within-
subjects ANOVA revealed a reliable effect of language category on the repeated
measure, ‘“‘code-completion” score: F(2, 58) = 3.60, p = 0.03, MSe,ror = 4.07, 00 = 0.05.
Partial eta squared = 0.11, which is considered a medium effect (Kinnear and Gray,
2010). The Tukey test revealed a significant difference between the Visual Basic mean
and the C++ mean at the 0.05 a-level; the difference between the Java mean and the
means for Visual Basic and C++ is insignificant. The p-value for the difference between
the Visual Basic and C++ means is 0.01; the p-values for the differences between the
Java mean and those for Visual Basic and C++ are 0.09 and 0.66, respectively. The
difference between the Visual Basic and C++ means 1s 1.08; the differences between the
Java mean and those for Visual Basic and C++ are 0.87 and 0.21, respectively.

Poor performance on “code-completion” questions could be indicative of poor
performance on “code-writing” questions. Although the purpose of a tool such as the
computer concepts inventory is to provide an objective measure of student performance,
that does not preclude the use of subjective measurement tools when deemed necessary.
In order to determine if students can program effectively in their language of study, they
must be asked to write (or type) code. The “forgiving” nature of Visual Basic in
combination with its emphasis on interface design may detract from student learning of

basic programming skills.

96

CHAPTER 9: DISCUSSION

9.1 Importance of Computer Science Education Research

Numerous authors have written about the difficulties novices experience in
learning to program. Theories have been put forth as to why this is so and solutions
proposed to remedy the situation. Several decades of research have yielded no definitive
answers, and the number of students choosing to go into computer and information
science has continued to drop. According to the Computing Research Association
(CRA), however, enrollment in American computer science programs during the 2007-
2008 academic year increased for the first time in six years (Zweben, 2009). These
findings suggest that it would be in the best interests of the computer and information
science community to actively pursue research that encourages this trend.

The research presented here was motivated by an interest in improving practices
in computer science education in general and improving my own practices as a computer
science educator in particular. Its purpose was to develop an instrument to assess student
learning of fundamental and object-oriented programming concepts, and to use that
instrument to investigate the impact of different languages and teaching approaches on
students’ ability to iearn those concepts.

This discussion proceeds by examining the performance of the assessment
instrument itself (Research Question 1), followed by explorations into the findings the
instrument yielded (Research Questions 2, 3, and 4). The remaining sections discuss
implications of the findings for computer science education and directions for future

work.

97

9.2 Assessment Instrument Performance

® Research Question 1: In a field like computer science where there are educational
guidelines but no actual standards, is it possible to create a tool to assess student
knowledge of fundamental and object-oriented programming (OO) concepts that

is sufficiently “generic” to be adopted for general use?

The computer concepts assessment tool performed better in its first trial than I had
dared to hope. The tool was field-tested at Drexel and Rowan Universities during the
2009-2010 academic year. Sixty-one students enrolled in a variety of freshman level
programming courses participated in the two-part study.

Analysis of the data gathered showed that the assessment tool performed
reasonably well at both the pre-test and post-test administrations. Reliability estimates
calculated using K-R21 (Kuder and Richardson, 1937) and Cronbach’s Alpha (Ebel and
Frisbie, 1991) yielded values ranging from 0.57 (pre-test) to 0.75 (post-test), and 0.65
(pre-test) to 0.79 (post-test), respectively. A reliability coefficient of 0.60 or higher is
sufficient for exploratory research; 0.70 or higher is adequate; and 0.80 or higher is good
(Garson, 2010). Reliability was estimated separately for the pre-test and post-test
because of the diverse backgrounds of the student participants. Analysis of the
demographic surveys indicated that some of the students had not been exposed to all of
the basic and OO programming concepts before taking the pre-test. By the time they
took the post-test, they would have been introduced to all of the concepts.

Reliability is a necessary but not sufficient condition to ensure the validity of an
assessment tool. Consequently, evidence was gathered to demonstrate the two types of

validity most appropriate for this research, content validity and construct validity.

98

Different types of evidence provided support for content validity: intrinsic
characteristics, study of question responses, expert review. Content validity is intrinsic,
since the tool is based on the core concepts of the Programming Fundamentals
knowledge area defined by the 2008 ACM/IEEE curricular guidelines (CS2008 Review
Taskforce, 2008).

Haladyna (2004) stresses the importance of collecting evidence to validate both
test scores and the question responses aggregated to form them. Section 8.5.2 analyzed
the patterns for correct responses and incorrect responses (distracters) to gather evidence
in support of question response validity. Analysis showed that all possible responses,
correct as well as incorrect, were selected at least once, the desired result. Next, student
records were arranged in descending order by score and divided into quartiles to examine
the relationship between answer choice and overall test score. Ideally, the proportion of
students choosing correct answers should be directly related to their scores, while the
proportion choosing distracters should be inversely related. The desired relationship
between correct responses and scores held for 67% of the questions for the pre-test and
75% of the questions for the post-test, which is a respectable result. Between the pre-test
and the post-test, at most 50% of the distracters exhibited the desired inverse relationship
between incorrect responses and scores, indicating that many of the distracters need to be
improved or replaced.

Section 8.5.3 analyzed the overall performance of the computer concepts
assessment tool as well as the performance of its individual questions to gather additional
evidence in support of question response validity. Analysis showed that the assessment

tool performed well overall at both the pre- and post-test administrations based on the

99
item (question) discrimination values for the individual questions. Specifically, item
discrimination ratings were either “very good” or “reasonably good™ for 21 out of 24
questions. The 3 questions that performed poorly will have to be replaced or revised.

Feedback from Computer Science (CS) faculty who have reviewed the assessment
tool provide additional support for its validity. Several CS faculty whose students
participated in the study were asked to complete a review form that asked them to: 1)
answer the question; 2) decide whether the question reflects fundamental programming
concepts that students should know after completing an introductory course in object-
oriented programming; 3) rate the quality of the question on a scale of “do not use again,”

% G

“use again with major changes,” “use again with minor changes,” or “use again as is.”
Reviewers were encouraged to indicate how questions should be changed or why they
should not be used again, if appropriate. Feedback has been largely positive. One
reviewer indicated that 19 out of 24 questions reflected basic concepts and should be used
again “as is” or with “minor changes.” A second reviewer responded similarly, but
specified different questions that should be changed or omitted.

Evidence providing support for construct validity is still being gathered.
Exploratory factor analysis is a statistical technique that can be used to determine, based
on students’ responses, whether the questions that make up an assessment tool group into
constructs the tool is intended to measure (Hoegh and Moskal, 2009). Preliminary factor
analysis extracted seven components, three of which were readily comprehensible. These

LTS

three factors were labeled “methods and functions,” “mathematical and logical
expressions,” and “control structures.” A possible fourth factor that overlapped with the

“control structures” factor was labeled “questions with conditions.” Such overlap is not

100
surprising, however, since control structures contain conditions. Ideally, all assessment
tool questions should group into clearly defined factors that represent the construct
“understanding of fundamental programming concepts,” but that is a matter for future
work.

9.3 Student Performance

® Research Question 2: What effect does the teaching approach and/or programming
language have on students’ ability to grasp fundamental programming concepts
(e.g., assignment, iteration, functional decomposition, program flow, etc.)?

® Research Question 3: What effect does the teaching approach and/or programming
language have on students’ ability to grasp specific object-oriented programming
concepts (e.g., class creation, method invocation, object instantiation, etc.)?

s Research Question 4. What effect does the teaching approach and/or programming

language have on students’ ability to select the correct code to complete the

solution to a programming problem when provided with multiple options?

When students are given a test such as the computer concepts inventory at the
beginning of a course and again at the end of the course, the scores are generally
éxpected to go up. When they do not, one needs to ask why? Overall, the mean post-test
score (M = 10.73, s = 4.59) was slightly lower than the mean pre-test score (M = 11.40, s
= 3.63), but the difference was not significant at the .05 o-level. However, when the
students were divided into groups based on the language they were studying in the
programming course they were taking, the situation got more interesting.

The students had been recruited from eight different programming classes: two

instructing Java, two instructing Visual Basic, and four instructing C++. Students were

101

divided into a Java group, a Visual Basic group, and a C++ group. Pre-test and post-test
means were calculated for each of the language groups and examined graphically. The
Java students and the C++ students appeared to have performed similarly on both the pre-
and post-tests. The Visual Basic students, however, performed worse than the Java and
C++ students on both tests. Statistical analysis was therefore carried out to test whether
or not language of instruction affects student performance. The one-factor, within-
subjects analysis of variance (ANOVA) revealed a reliable effect of language category on
the repeated measure, score: F(2, 58) = 8.58, p < 0.01, MS¢ror = 23.23, o0 = 0.05. Partial
eta squared = 0.23, which is considered a large effect (Kinnear and Gray, 2010). These
results suggest that language of instruction does indeed affect overall student
performance in introductory programming courses.

To explore the impact of language of instruction on student performance with
respect to specific programming concepts and code-completion problems, questions were
grouped into categories (basics, logical expressions, conditionals, code-completion, and
so forth). Individual students’ scores were computed for each category for the pre-test
and the post-test. The mean scores for each category were calculated for the pre- and
post-tests. One-factor, within-subjects analysis of variance (ANOVA) tests were then
performed to determine if language of instruction affected student performance on
questions addressing specific programming concepts and code-completion.

Statistical analyses revealed an effect of language of instruction on student
performance with respect to questions involving basics, logical expressions, and code-
completion. Specifically, the one-factor, within-subjects ANOVAs revealed a significant

effect of language of instruction on the following repeated measures:

102
e “basics” score: F(2, 58) = 16.75, p < 0.01, MSror = 0.72, 0. = 0.05
* “logical expressions” score: F(2, 58) = 5.31, p = 0.01, MS¢yyor = 1.66, a0 = 0.05

e ‘“code-completion” score: F(2, 58) = 3.60, p = 0.03, MS,,,,r = 4.07, o0 = 0.05

For “basics” and “logical expressions,” the Tukey test revealed significant differences
between the Visual Basic mean and the means for Java and C++ at the 0.05 a-level; the
difference between the Java and C++ means is insignificant. For “code-completion,” the
Tukey test revealed a significant difference between the Visual Basic mean and the C++
mean at the 0.05 o-level; the difference between the Java mean and the means for Visual
Basic and C++ is insignificant.

Language of instruction did not appear to affect student performance on questions
addressing object-oriented concepts. However, differences were noted within language
groups. Within-subjects paired samples z-tests showed significant differences between
the pre- and post-test “classes and objects” means for the C++ and Visual Basic students.
For the C++ students, a paired samples #-test revealed a statistically reliable difference
between the mean pre-test (M = 0.92, s = 1.13) and post-test (M = 1.39, s = 1.30) “classes
and objects” scores: #(25) = -2.74, p = 0.01, a = 0.05. For the Visual Basic students, a
paired samples #-test revealed a statistically reliable difference between the mean pre-test
M =1.32, s =1.17) and post-test (M = 0.55, s = 0.60) “classes and objects” scores: #(21)

=294, p=0.01, a = 0.05.

103

Overall student performance with respect to programming language can be
summarized as follows:
¢ The performance of the Java students was consistent.
® The performance of the C++ students improved.

® The performance of the Visual Basic students declined.

The first two scenarios are acceptable; the third is not.

The performance of the Visual Basic (VB) students was consistently poorer than
that of the Java and C++ students and declined overall. These observations lead to the
following questions:

1) Why was the performance of the VB students poorer than that of the Java and C++
students?

Several possible reasons present themselves. It may be that highly structured
languages like Java and C++ promote better overall learning than less structured
languages like Visual Basic. For example, Visual Basic allows programmers to use
variables without first declaring them. Visual Basic also allows certain types of methods
to be invoked using more than one syntactic expression. Neither of these practices is
allowed in C++ or Java.

It may also be that the interface design aspect of Visual Basic programming
detracts from student learning of fundamental concepts. I have learned through personal
experience teaching introductory programming using Visual Basic that students seem to
like the graphical aspect. However, it may be that the time spent learning to create
graphical user interfaces (GUIs) would be better spent learning the fundamental

programming constructs needed to implement them.

104

2) Why did the performance of the VB students decline?

One possible explanation for this result has to do with the approach used to
teach the course. The prerequisite course introduced the students to Visual Basic
programming using the typical lecture/lab approach in which they were assessed at
regular intervals to reinforce their learning. The follow-up course — the course the
students were taking when they participated in this study — used a project-based
approach. According to the course syllabus, 90% of the student’s grade was based on
the design and implementation of a small-scale enterprise system. The project was
intended to cover all basic and object-oriented programming concepts, but
emphasized interface design and event-driven programming. It may be that a tenuous
grasp of fundamental concepts in combination with the emphasis on designing
interfaces and handling events caused the students to forget what they had learned in
the previous course. It may also be that a semester-long project was less effective at
reinforcing student learning of fundamental concepts than exams, quizzes, and lab
assignments given regularly throughout the course.

3) Why is this result a reason for concern in CS education?

As discussed in Section 9.4, students who take introductory programming courses
taught in Visual Basic may very well go on to take additional programming courses
taught in other languages. The results of this research suggest that these students may be
at a disadvantage when they find themselves in programming classes with students who
have learned to program in languages such as C++ or Java. A firm grasp of basic

concepts and skills is necessary to succeed in any programming course, but particularly

105

so 1n courses that use complex, highly structured object-oriented languages like C++ and
Java.
9.4 Implications for Computer Science Education

I recently asked a Rowan colleague why we (meaning the Computer Science
Department) switched from teaching Scheme to teaching Visual Basic in the Introduction
to Programming course back in 1996. He gave two reasons: 1) Because the Introduction
to Programming course was a “terminal” programming course for many students, the
faculty thought it was better to introduce them to programming using a RAD (Rapid
Application Development) tool such as Visual Basic; 2) Microsoft Office applications
support programming with Visual Basic for Applications (VBA), a programming
language derived from classic Visual Basic. However, many students who take the
Introduction to Programming course and other introductory programming courses taught
in Visual Basic (Introduction to Scientific Programming, Enterprise Computing I) go on
to take additional programming courses in languages other than Visual Basic. The results
of this research suggest that these students may be at a disadvantage when they find
themselves in programming classes with students who have learned to program in
languages such as C++ or Java.

In general, the resuits of this research suggesi ihat diverse perspectives must be
considered when choosing languages in which to introduce students to programming. A
language that may seem to be the ideal choice when viewed from one perspective may
turn out to be the worst possible choice when viewed from another perspective.
Programming classes that students may take in the future should be considered when

selecting introductory languages.

106

9.5 Future Work

Future work will entail improving the computer concepts assessment tool and
continuing my investigations with regard to the impact of different languages and
teaching approaches on student learning of introductory programming concepts. In
addition, analysis of the computer concepts survey data and the attitude survey data will
continue.

Although the computer concepts assessment tool performed reasonably well at its
first trial, the discussion in Section 9.2 suggests areas for improvement. First, the three
questions that performed poorly must either be revised or replaced with different
questions addressing similar topics. Second, about half of the distracters did not exhibit
the desired inverse relationship between percentage chosen and student score. As a
result, they must be modified or replaced with different distracters. Another problem in
conjunction with a correct response and an incorrect response in one of the “classes and
objects” questions, Question 24, was identified by one of the faculty reviewers. He noted
that although the pseudocode for the two responses was syntactically different, either the
correct or the incorrect response would work in Visual Basic because of the language’s
“forgiving” nature. (Only the correct response would work in C++ or Java.) The
improperly performing distracter will have to be repiaced with one that is incorrect in ail
languages. Finally, work must continue to fully validate the tool after the indicated
changes have been made.

Because the students who participated in this study were not randomly chosen, it
may have been more appropriate to analyze the computer concepts survey data using

analysis of covariance (ANCOVA) instead of analysis of variance (ANOVA). The

107

ANCOVA can be used to control for factors which cannot be randomized. Specifically,
it reduces the error term, thereby increasing the power of the F test (Garson, 2010;
Kinnear and Gray, 2010).

The original goal of this research was to explore the impact of different languages
and teaching approaches on student learning of introductory programming concepts. In
retrospect, it was an overly ambitious goal. The backgrounds of the students I was able
to recruit allowed me to investigate the impact of different programming languages on
student learning of introductory concepts, but only to conjecture about the impact of
different teaching approaches. Investigating the impact of different teaching approaches
most likely requires the involvement of multiple instructors at multiple institutions. For
example, members of the Rowan Computer Science faculty introduce students to Java
programming using BluelJ, a novice programming environment that supports the “objects-
first” approach. Comparing the impact of “objects-first” using BlueJ to the impact of
“imperative-first” using JGRASP (for example) on student learning of Java concepts
would necessitate involving instructors at universities who teach Java using the
“imperative-first” approach. In order to properly investigate the impact of different
teaching approaches, the programming language must be the same. Apart from Java, all
other programming courses at Rowan are taught using the “imperative-first” approach (as
far as I know, anyway).

Finally, analysis of the attitude survey data is still in progress. I was able to
obtain some sense of the students’ overall responses during the process of entering the
data into the computer. However, that is hardly sufficient. Properly exploring the

relationship between students’ attitudes toward computer science and programming and

108

their performance on the computer concepts survey requires statistical analysis. I am
particularly interested in examining the correlation between students’ responses to the
questions addressing the usefulness of programming in their future work and their scores

on the concepts survey.

109

LIST OF REFERENCES

1. Aberson, C. L. (2010). Applied Power analysis for the Behavioral Sciences.
NewYork, NY: Routledge.

2. Adams, J. C. (2007). Alice, middle schoolers & the imaginary worlds camps. In
Proceedings of the 38th SIGCSE technical symposium on Computer science education,
New York: ACM Press, 307-311.

3. Agarwal, K. K., and Agarwal, A. (2005). Python for CS1, CS2 and beyond. Journal
of Computing Sciences in Colleges, 20(4), 262-270.

4. Agarwal, K. K., and Agarwal, A. (2006). Simply Python for CSO. Journal of
Computing Sciences in Colleges, 21(4), 162-170.

5. Algebra End-of-Course Assessment. (2009). Educational Testing Service (ETS).
Retrieved 29 December, 2009, from
http://www.ets.org/portal/site/ets/menuitem.435¢0bScc7bd0ae7015d9510¢3921509/7ven
extoid=4d7de3b5f64f4010VenVCM 10000022f95190RCRD.

6. Alice v3.0. (2010). Pittsburgh: Carnegie Mellon University. Retrieved 13 August,
2010, from http://www.alice.org/.

7. Allen, E., Cartwright, R., and Stoler, B. (2002). DrJava: A lightweight pedagogic
environment for Java. In SIGCSE '02: Proceedings of the 33rd SIGCSE technical
symposium on Computer science education, New York: ACM Press, 137-141.

8. Allen, K. (2007). Concept inventory central. Retrieved 29 December, 2009, from
https://engineering.purdue.edu/SCl/workshop/tools.html.

9. American Educational Research Association, American Psychological Association &
National Council on Measurement in Education (1999). Standards for Educational and
Psychological Testing. Washington, DC: American Educational Research Association.

10. Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard
University Press.

11. Ausubel, D. P. (1968). Educational Psychology: A Cognitive View. New York:
Holt, Rinehart, and Winston.

12. Ausubel, D. P. (1960). The use of advance organizers in the learning and retention
of meaningful verbal material. Journal of Educational Psychology, 51(5), 267-272.

http://www.ets.org/portal/site/ets/menuitem.435c0b5cc7bd0ae7015d9510c3921509/7vgn
http://www.alice.org/
https://engineering.purdue.edu/SCI/workshop/tools.html

110

13. Babbie, E. (2004). The Practice of Social Research. Belmont, CA:
Wadsworth/Thomson Learning.

14. Bailie, F., Blank, G., Murray, K., and Rajaravivarma, R. (2002). Java visualization
using BluelJ. Journal of Computing Sciences in Colleges, 18(3), 175-176.

15. Barnes, D. J., and Kolling, M. (2005). Objects First With Java: A Practical
Introduction Using BlueJ. London: Pearson Prentice Hall.

16. Bamett, S. M., and Ceci, S. J. (2002). When and where do we apply what we learn?
A taxonomy for far transfer. Psychological Bulletin, 128(4), 612-637.

17. Ben-Ari, M. (1998). Constructivism in computer science education. In SIGCSE '98:
Proceedings of the 29th SIGCSE technical symposium on Computer science education,

New York: ACM Press, 257-261.

18. BlueJ. Retrieved 14 December, 2005, from http://www.bluej.org/.

19. Bonar, J., and Soloway, E. (1989). Preprogramming knowledge: A major source of
misconceptions in novice programmers. In E. Soloway and J. Spohrer (Eds.), Studying
the Novice Programmer. Hillsdale, NJ: Lawrence Erlbaum Associates, 325-353.

20. Bonar, J., and Soloway, E. (1983). Uncovering principles of novice programming.
In Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, New York: ACM Press, 10-13.

21. Borland JBuilder 2006. (2006). Retrieved 31 March, 2006, from
http://www.borland.com/us/products/jbuilder/index.html.

22. Bransford, J. D., Brown, A. L., and Cocking, R. R. (Eds.). (1999). How People
Learn: Brain, Mind, Experience, and School. Washington, DC: National Academy Press.

23. Clancy, M. (2004). Misconceptions and attitudes that interfere with learning to
program. In S. Fincher and M. Petre (Eds.), Computer Science Education Research.
London, UK: Taylor and Francis Group, 85-100.

24. Cobb, P., and Steffe, L. P. (1983). The constructivist researcher as teacher and
model builder. Journal for Research in Mathematics Education, 14(2), 83-94.

25. Cobb, P., Wood, T., Yackel, E., Nicholls, I., Wheatley, G., Trigatti, B., and Perlwitz,
M. (1991). Assessment of a problem-centered second-grade mathematics project.
Journal for Research in Mathematics Education, 22(1), 3-29.

26. CodeLab. (2004). Retrieved 18 April, 2007, from http://turingscraft.com/.

http://www.bluej.org/
http://www.bor1and.com/us/products/ibuilder/index.html
http://turingscraft.com/

111

27. Computer Science Teachers Association (CSTA). (2005). Retrieved 5 November,
2009 from http://www.csta.acm.org/.

28. Concept Inventories for Computer Science. Retrieved 12 January, 2010, from
http://www-sal.cs.uiuc.edu/~zilles/csci.html].

29. Constructivism as a Paradigm for Teaching and Learning. (2004). Educational
Broadcasting Corporation. Retrieved 14 May, 2007, from
http://www.thirteen.org/edonline/concept2class/constructivism/index.html.

30. Conway, M., Audia, S., Bumette, T., Cosgrove, D., Christiansen, K., Deline, R., et al.
(2000). Alice: Lessons learned from building a 3D system for novices. In Proceedings
of the SIGCHI conference on Human factors in computing systems, New York: ACM
Press, 486-493.

31. Cooper, S., Dann, W., and Pausch, R. (2000). Alice: A 3-D tool for introductory
programming concepts. Journal of Computing Sciences in Colleges, 15(5), 107-116.

32. Cooper, S., Dann, W., and Pausch, R. (2003a). Teaching objects-first in introductory
computer science. In Proceedings of the 34th SIGCSE technical symposium on
Computer science education, New York: ACM Press, 191-195.

33. Cooper, S., Dann, W, and Pausch, R. (2003b). Using animated 3D graphics to
prepare novices for CS1. Computer Science Education, 13(1), 3-30.

34. CS2008 Review Taskforce. (2008). Computer Science Curriculum 2008: An Interim
Revision of CS 2001. Association for Computing Machinery (ACM)/IEEE Computer
Society. Retrieved 6 April, 2010, from
http://www.acm.org/education/curricula/ComputerScience2008.pdf.

35. Dann, W., Cooper, S., and Pausch, R. (2006). Learning to Program with Alice.
Upper Saddle River: Pearson Prentice Hall.

36. Dann, W, Cooper, S., and Pausch, R. (2000). Making the connection: Programming
with animated small world. ACM SIGCSE Bulletin, 32(3), 41-44.

37. Dann, W., Cooper, S., and Pausch, R. (2003). Objects: Visualization of behavior and
state. In Proceedings of the 8th annual conference on Innovation and technology in
computer science education, New York: ACM Press, 84-88.

38. DeAyala, R. J., Plake, B. S., and Impara, J. C. (2001). The impact of omitted
responses on the accuracy of ability estimation in item response theory. Journal of
Educational Measurement, 38(3), 213-234.

39. Dougherty, J. P. (2007). Concept visualization in CSO using Alice. Journal of
Computing Sciences in Colleges, 22(3), 145-152.

http://www.csta.acm.org/
http://www-sal.cs.uiuc.edu/~zilles/csci.html
http://www.thirteen.org/edonline/concept2class/constructivism/index.html
http://www.acm.org/education/curricula/ComputerScience2008.pdf

112

40. Dr}ava. Retrieved 31 March, 2006, from http://drjava.org/.

41. DuBoulay, B. (1989). Some difficulties of learning to program. In E. Soloway and
J. Spohrer (Eds.), Studying the Novice Programmer. Hillsdale, NJ: Lawrence Erlbaum
Associates, 283-299.

42. Ebel, R. L., and Frisbie, D. A. (1991). Essentials of Educational Measurement.
Englewood Cliffs, NJ: Prentice-Hall.

43. Eclipse SDK 3.1.2. (2006). Retrieved 31 March, 2006, from http://www.eclipse.org/.

44. Elvers, G. C. (2006). Using SPSS for One Way Analysis of Variance. Retrieved 27
July, 2010, from http://academic.udayton.edu/gregelvers/psy216/SPSS/1wayanova.htm.

45. Elvin, C. (2004). Test Item Analysis Using Microsoft Excel Spreadsheet Program.
Retrieved 30 March, 2010, from
http://www.eflclub.com/elvin/publications/2003/itemanalysis.html.

46. Evans, D. L., Gray, G. L., Krause, S., Martin, J., Midkiff, C., Notaros, B. M., et al.
(2003). Progress on concept inventory assessment tools. In Proceedings of the 33
ASEE/IEEE Frontiers in Education Conference, New York: IEEE, T4G1-T4GS.

47. Even, R. (2005). Using assessment to inform instructional decisions: How hard can
it be? Mathematics Education Research Journal, 17(3), 45-61.

48. Fincher, S., and Petre, M. (Eds.). (2004). Computer Science Education Research.
London, UK: Taylor and Francis Group.

49. Fleury, A. (2000). Programming in Java: Student-constructed rules. ACM SIGCSE
Bulletin, 32(1), 197-201.

50. Garson, G. D. (2010). Reliability Analysis, from Statnotes: Topics in Multivariate
Analysis. Retrieved 20 July, 2010, from
http://faculty.chass.ncsu.edu/earson/pa765/statnote.htm.

51. Gersting, J. L. (2007). Mathematical Structures for Computer Science. New York,
NY: W. H. Freeman and Company.

52. Goldman, K., Gross, P., Heeren, C., Herman, G., Kaczmarczyk, L., Loui, M. C., and
Zilles, C. (2008). Identifying important and difficult concepts in introductory computing
courses using a Delphi process. In SIGCSE '08: Proceedings of the 39th SIGCSE
technical symposium on computer science education, New York: ACM Press.

http://drjava.org/
http://www.eclipse.org/
http://academic.udavton.edu/gregelvers/psy216/SPSS/lwavanova.htm
http://www.eflclub.com/elvin/publications/2003/itemanalysis.html
http://faculty.chass.ncsu.edu/garson/pa765/statnote.htm

113

53. Grandell, L., Peltoméki, M., Back R., and Salakoski, T. (2006). Why complicate
things?: Introducing programming in high school using Python. In Proceedings of the
8th Australian conference on Computing education, Darlinghurst, Australia: Australian
Computer Society, Inc., 71-80.

54. Gray, K. E., and Flatt, M. (2003). Professor]J: a gradual introduction to Java through
language levels. In OOPSLA '03: Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications, New
York: ACM Press, 170-177.

55. Greeno, J. G. (2006). Authoritative, accountable positioning and connected, general
knowing: Progressive themes in understanding transfer. The Journal of the Learning
Sciences, 15(4), 537-547.

56. Gross, P., and Powers, K. (2005). Evaluating assessments of novice programming
environments. In Proceedings of the 2005 international workshop on Computing
education research, New York: ACM Press, 99-110.

57. Hadjerrouit, S. (1999). A constructivist approach to object-oriented design and
programming. In Proceedings of the 4th annual SIGCSE/SIGCUE ITiCSE conference on
Innovation and technology in computer science education, New York: ACM Press, 171-
174.

58. Haladyna, T. M. (2004). Developing and Validating Multiple-Choice Test Items.
Mahwah, NJ: Lawrence Erlbaum Associates.

59. Hartley, S. J. (2009). Introduction to scientific programming syllabus. Retrieved 15
November, 2009 from
http://elvis.rowan.edu/~hartley/Courses/IntroSciProg/2009/Fall/syllabus.htm].

60. Hendrix, T. D., Cross, II, J. H., and Barowski, L. A. (2004). An extensible
framework for providing dynamic data structure visualizations in a lightweight IDE. In
SIGCSE '04: Proceedings of the 35th SIGCSE technical symposium on Computer science
education, New York: ACM Press, 387-391.

61. Hergenhahn, B. R., and Olson, M. H. (2001). An Introduction to Theories of
Learning. Upper Saddle River: Pearson Prentice Hall.

62. Herman, G. L., Loui, M. C., and Zilles, C. (2010). Creating the digital logic concept
inventory. In SIGCSE '10: Proceedings of the 41st SIGCSE technical symposium on
computer science education, New York: ACM Press.

63. Hestenes, D., and Halloun, 1. (1995). Interpreting the Force Concept Inventory. The
Physics Teacher, 33(8), 502-506.

http://elvis.rowan.edu/~hartlev/Courses/IntroSciProg/2009/Fall/syllabus.html

114

64. Hestenes, D., Wells, M., and Swackhamer, G. (1992). Force Concept Inventory.
The Physics Teacher, 30(3), 141-151.

65. Hoegh, A., and Moskal, B. (2009). Examining science and engineering students’
attitudes toward computer science. In Proceedings of the 39" ASEE/IEEE Frontiers in
Education Conference, New York: IEEE, W1G-1-W1G-6.

66. Hsia, J. 1., Simpson, E., Smith, D., and Cartwright, R. (2005). Taming Java for the
classroom. In SIGCSE '05: Proceedings of the 36th SIGCSE technical symposium on
Computer science education, New York: ACM Press, 327-331.

67. Hundhausen, C. D., Farley, S., and Brown, J. L. (In press). Can direct manipulation
lower the barriers to programming and promote positive transfer to textual programming?
An experimental study. To appear in Proceedings of the IEEE 2006 Symposium on
Visual Languages and Human-Centric Computing.

68. International Technology Education Association (ITEA). (2007). Standards for
Technological Literacy: Content for the Study of Technology. Reston, VA: ITEA.

69. Jackson, S. L., Krajcik, J., and Soloway, E. (1998). The design of guided learner-
adaptable scaffolding in interactive learning environments. In Proceedings of the

SIGCHI conference on Human factors in computing systems, New York: ACM Press,
187-194.

70. Java Platform, Standard Edition (J2SE). (2005). Santa Clara: Sun Microsystems,
Inc. Retrieved 25 December, 2005, from http://java.sun.com/j2se/downloads/index.html.

71. JavaScript. (2007). Wikipedia, the Free Encyclopedia. Retrieved 1 May, 2007, from
http://en.wikipedia.org/wiki/JavaScript.

72. Jeliot 3. Retrieved 31 March, 2006, from http://cs.joensuu.fi/jeliot/index.php.

73. jGRASP 1.8.4. (2006). Retrieved 20 October, 2006, from http://jgrasp.org/.

74. Joint Task Force on Computing Curricula. (2001). Computing Curricula 2001
Computer Science. IEEE Computer Society/Association for Computing Machinery.
Retrieved 7 December, 2009, from

http://www.computer.org/portal/cms docs ieeecs/ieeecs/education/cc2001/cc2001.pdf.

75.JUnit. (2004). Retrieved 9 April, 2006 from http://www.junit.org/index.htm.

76. Kaczmarczyk, L. C., Petrick, E. R., East, J., P., and Herman, G. L. (2010).
Identifying student misconceptions of programming. In SIGCSE '10: Proceedings of the
41st SIGCSE technical symposium on computer science education, New York: ACM
Press.

http://java.sun.com/i2se/downloads/index.html
http://en.wikipedia.org/wiki/JavaScript
http://cs.joensuu.fi/jeliot/index.php
http://jgrasp.org/
http://www.computer.org/poital/cms
http://www.iunit.org/index.htm

115

77. Kelleher, C., and Pausch, R. (2005). Lowering the barriers to programming: A
taxonomy of programming environments and languages for novice programmers. ACM
Computing Surveys, 37(2), 83-137.

78. Kelleher, C., and Pausch, R. (2005). Stencils-based tutorials: Design and evaluation.

In Proceedings of the SIGCHI conference on Human factors in computing systems, New
York: ACM Press, 541-550.

79. Kelley, L. (2002). Course Embedded Assessment Process. California Assessment
Institute. Retrieved 20 May, 2007, from http://cai.cc.ca.us/Resources/.

80. Kessler, C. M., and Anderson, J. R. (1989). Learning flow of control: Recursive and
iterative procedures. In E. Soloway and J. Spohrer (Eds.), Studying the Novice
Programmer. Hillsdale, NJ: Lawrence Erlbaum Associates, 229-260.

81. Kinnear, P. R., and Gray, C. D. (2010). PASW Statistics 17 Made Simple. New
York, NY: Psychology Press.

82. Kolling, M., Quig, B., Patterson, A., and Rosenberg, J. (2003). The BlueJ system
and its pedagogy. Computer Science Education, 13(4), 249-268.

83. Kuder, G. F., and Richardson, M. W. (1937). The theory of the estimation of test
reliability. Psychometrika, 2(3), 151-160.

84. Kurland, D. M., and Pea, R. D. (1989). Children’s mental models of recursive Logo
programs. In E. Soloway and J. Spohrer (Eds.), Studying the novice programmer.
Hillsdale, NJ: Lawrence Erlbaum Associates, 315-323,

85. Kyd, C. (2006a). An Excel Tutorial: An Introduction to Excel's Normal Distribution
Functions. ExcelUser, Inc. Retrieved 21 July, 2010, from
http://www.exceluser.com/explore/statsnormal.htm.

86. Kyd, C. (2006b). An Excel Tutorial: How to Create Normal Curves in Excel, with
Shaded Areas. ExcelUser, Inc. Retrieved 21 July, 2010, from
http://www.exceluser.com/explore/normalcurve.htm.

87. Lobato, J. (2006). Alternative perspectives on the transfer of learning: History,
issues, and challenges for future research. The Journal of the Learning Sciences, 15(4),
431-449.

88. Lobato, J. (2003). How design experiments can inform a rethinking of transfer and
vice versa. Educational Researcher, 32(1), 17-20.

http://cai.cc.ca.us/Resources/
http://www.exceluser.com/explore/statsnormal.htm
http://www.exceluser.com/explore/nonTialcurve.htm

116

89. Major Field Test for Computer Science. (2009). Educational Testing Service (ETS).
Retrieved 29 December, 2009, from

http://www.ets.org/portal/site/ets/menuitem. 148851 2ecfd5b8849a77b13bc3921509/2vene
xtoid=fd29af5e44dt4010Van VCM 100000221951 90RCR D& vgnextchannel=eddc144e50
bd2110VenVCM10000022f95190RCRD.

90. Mayer, R. E. (1979). Can advance organizers influence meaningful learning?
Review of Educational Research, 49(2), 371-383.

91. Mayer, R. E. (1975). Different problem-solving competencies established in
learning computer programming with and without meaningful models. Journal of
Educational Psychology, 67(6), 725-734.

92. Mayer, R. E. (1975). Information processing variables in learning to solve problems.
Review of Educational Research, 45(4), 525-541.

93. Mayer, R. E. (1989). The psychology of how novices learn computer programming.
In E. Soloway and J. Spohrer (Eds.), Studying the Novice Programmer. Hillsdale, NJ:
Lawrence Erlbaum Associates, 129-159.

94. Mayer, R. E. (1976). Some conditions of meaningful learning for computer
programming: Advance organizers and subject control of frame order. Journal of
Educational Psychology, 68(2), 143-150.

95. Mayer, R. E., and Bromage, B. K. (1980). Different recall protocols for technical
texts due to advance organizers. Journal of Educational Psychology, 72(2), 209-225.

96. McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D.,
et al. (2001). A multi-national, multi-institutional study of assessment of programming
skills of first-year CS students. ACM SIGCSE Bulletin, 33(4), 125-140.

97. Mclver, L. (2002). Evaluating languages and environments for novice programmers.
In J. Kuljis, L. Baldwin, and R. Scoble (Eds.), Proceedings of the 14th Annual Workshop
of the Psychology of Programming Interest Group, Brunel University, London, UK, 100-
110.

98. Medlock, A. A. (2008). CS 130: Computer programming concepts with 3-D
animation. Retrieved 15 November, 2009 from
http://www.cs.drexel.edu/~aalban/CS131/.

99. Mercer, R. (1995). Computing Fundamentals with C++. Wilsonville, OR: Franklin,
Beedle and Associates.

100. Merriam-Webster’s Collegiate Dictionary (]]'h ed.). (2003). Springfield, MA:
Merriam-Webster, Inc.

http://www.ets.org/portal/site/ets/menuitem.1488512ecfd5b8849a77bl3bc3921509/7vgne
http://www.cs.drexel.edu/~aalban/CS

117

101. Microsoft Visual J++ 6.0. (2006). Retrieved 31 March, 2006, from
http://msdn.microsoft.com/visharp/productinfo/visualj/visuali6/.

102. Microsoft Visual Studio 2010. (2010). Retrieved 19 August, 2010, from
http://www.microsoft.com/visualstudio/en-us.

103. Mitchell, J. W., and Martin, J. K. (2007). Use of thermodynamics, fluid mechanics
and heat transfer concept inventories to assess student learning in core courses. Retrieved
29 December, 2009 from
https://engineering.purdue.edu/SCIl/workshop/summaries/Fluids %20Heat %20 Thermo%?2
OLong%20Summary.doc.

104. Moreno, A., and Myller, N. (2003). Producing an educationally effective and
usable tool for learning, the case of the Jeliot family. In Proceedings of the International
Conference on Networked e-learning for European Universities, Granada, Spain.

105. Moreno, A., Myller, N., Sutinen, E., and Ben-Ari, M. (2004). Visualizing
programs with Jeliot 3. In AVI '04: Proceedings of the working conference on Advanced
visual interfaces, New York: ACM Press, 373-376.

106. Moskal, B., Lurie, D., and Cooper, S. (2004). Evaluating the effectiveness of a new
instructional approach. In Proceedings of the 35th SIGCSE technical symposium on
Computer science education, New York: ACM Press, 75-79.

107. National Educational Technology Standards (NETSeS) and Performance Indicators
for Students. (2007). International Society for Technology in Education (ISTE).
Retrieved 11 August, 2010, from
http://www.iste.org/Content/NavigationMenw/NETS/ForStudents/2007Standards/NETS _f
or_Students 2007 Standards.pdf.

108. NetBeans IDE 5.0. Retrieved 22 July, 2006, from http://www.netbeans.org/.

109. Nourie, D. (2002). Teaching Java technology with BlueJ. Santa Clara: Sun
Microsystems, Inc. Retrieved 23 December, 2005, from
http://java.sun.com/features/2002/07/bluej.html.

110. Nugent, G., Soh, L., Samal, A., and Lang, J. (2006). A placement test for computer

science: Design, implementation, and analysis. Computer Science Education, 16(1), 19-
36.

111. Olan, M. (2004). Dr.J vs. the bird: Java IDE's one-on-one. Journal of Computing
Sciences in Colleges, 19(5), 44-52.

112. Oldham, J. D. (2005). What happens after Python in CS1? Journal of Computing
Sciences in Colleges, 20(6), 7-13.

http://rnsdn.rnicrosoft.corn/vjsharp/pi'oductinfo/visualj/visuali6/
http://www.microsoft.com/visualstudio/en-us
https://engineering.purdue.edu/SCI/workshop/summaries/Fluids%20Heat%20Thenno%252
http://www.iste.org/Content/NavigationMenu/NETS/ForStudents/2007Standards/NETS
http://www.netbeans.org/
http://iava.sun.com/features/2002/07/bluei.html

118

113. Packer, M. (2001). The problem of transfer, and the sociocultural critique of
schooling. The Journal of the Learning Sciences, 10(4), 493-514.

114. Papert, S. (1993). Mindstorms: Children, Computers, and Powerful Ideas.
Cambridge, MA: Perseus Publishing.

115. PASW Statistics 18. (2010). Retrieved 22 July, 2010, from http://www.spss.com/.

116. Patterson, A., Kolling, M., and Rosenberg, J. (2003). Introducing unit testing with
Bluel. In Proceedings of the 8th annual conference on Innovation and technology in
computer science education, New York: ACM Press, 11-15.

117. Pattis, R. (1981). Karel the Robot. New York: John Wiley and Sons.

118. Pea, R. D., Soloway, E., and Spohrer, J. (1987). The buggy path to the
development of programming expertise. Focus on Learning Problems in Mathematics,
9(1), 5-30.

119. Perkins, D. N., and Salomon, G. The science and art of transfer. Retrieved 4
February, 2007, from http://learnweb.harvard.edu/alps/thinking/docs/trancost.htm.

120. Pirolli, P., and Recker, M. (1994). Learning strategies and transfer in the domain of
programming. Cognition and Instruction, 12(3), 235-275.

121. Polson, P. G., Bovair, S., and Kieras, D. (1987). Transfer between text editors. In
CHI and GI 1987 Conference Proceedings: Human Factors in Computing Systems and
Graphics Interface, New York, NY: ACM Press, 27-32.

122. Polson, P. G., and Kieras, D. E. (1985). A quantitative model of the learning and
performance of text-editing knowledge. In CHI 1985 Conference Proceedings: Human
Factors in Computing Systems and Graphics Interface, New York, NY: ACM Press, 207-
212.

123. Polson, P. G., Muncher, E., and Engelbeck, G. (1986). A test of a common
elements theory of transfer. In CHI 1986 Conference Proceedings: Human Factors in
Computing Systems and Graphics Interface, New York, NY: ACM Press, 78-83.

124. Popyack, J. L. (2009). CS 171/SE 102: Computer Programming I. Retrieved 15
November, 2009 from http://www.cs.drexel.edu/~mcs171/Wi09.

125. Powers, K., Ecott, S., and Hirshfield, L. M. (2007). Through the looking glass:
Teaching CSO with Alice. In Proceedings of the 38th SIGCSE technical symposium on
Computer science education, New York: ACM Press, 213-217.

http://www.spss.com/
http://learnweb.harvard.edu/alps/thinking/docs/trancost.htm
http://www.cs.drexel.edu/~mcs

119

126. Preece, J., Rogers, Y., and Sharp, H. (2002). Interaction Design: Beyond Human-
Computer Interaction. New York: John Wiley & Sons.

127. Professor). Retrieved 31 March, 2006, from http://www.cs.utah.edu/~kathyg/profj/.

128. Provine, D. (2009). Introduction to programming syllabus. Retrieved 15
November, 2009 from http://elvis.rowan.edu/~kilroy/class/intro/?syllabus.

129. Puntambekar, S., and Hiibscher, R. (2005). Tools for scaffolding students in a
complex learning environment: What have we gained and what have we missed?
Educational Psychologist, 40(1), 1-12.

130. Putnam, R. T., Sleeman, D., Baxter, J. A., and Kuspa, L. K. (1989). A summary of
misconceptions of high-school BASIC programmers. In E. Soloway and J. Spohrer
(Eds.), Studying the novice programmer. Hillsdale, NJ: Lawrence Erlbaum Associates,
301-314.

131. Python. (2007). Python Software Foundation. Retrieved 22 April, 2007, from
http://python.org/.

132. Radenski, A. (2006). "Python first": A lab-based digital introduction to computer
science. In Proceedings of the 11th annual SIGCSE conference on Innovation and
technology in computer science education, New York: ACM Press, 197-201.

133. Ragonis, N., and Ben-Ari, M. (2005a). A long-term investigation of the
comprehension of OOP concepts by novices. Computer Science Education, 15(3), 203-
221.

134. Ragonis, N., and Ben-Ari, M. (2005b). On understanding the statics and dynamics
of object-oriented programs. In SIGCSE '05: Proceedings of the 36th SIGCSE technical
symposium on Computer science education, New York: ACM Press, 226-230.

135. Reis, C., and Cartwright, R. (2004). Taming a professional IDE for the classroom.
In SIGCSE '04: Proceedings of the 35th SIGCSE technical symposium on Computer
science education, New York: ACM Press, 156-160.

136. Rist, R. S. (1986). Plans in programming: Definition, demonstration and
development. In E. Soloway and R. Iyengar (Eds.), Empirical Studies of Programmers.
Norwood, NJ: Ablex Publishing Corporation, 28-47.

137. Rist, R. S. (1989). Schema creation in programming. Cognitive Science, 13, 389-
414.

138. Robins, A., Rountree, J., and Rountree, N. (2003). Learning and teaching
programming: A review and discussion. Computer Science Education, 13(2), 137-172.

http://www.cs.utah.edu/~kathyg/profj/
http://elvis.rowan.edu/~kilrov/class/intro/7syllabus
http://python.org/

120

139. Savitch, W. (2005). Java: An Introduction to Problem Solving & Programming.
Upper Saddle River: Pearson Prentice Hall.

140. Savitch, W. (2003). Problem Solving with C++: The Object of Programming.
Boston, MA: Addison-Wesley.

141. Scholtz, J., and Wiedenbeck, S. (1993). An analysis of novice programmers
learning a second language. In C. R. Cook, J. C. Scholtz, and J. C. Spohrer (Eds.),
Empirical Studies of Programmers: Fifth Workshop. Norwood, NJ: Ablex Publishing
Corporation, 187-205.

142. Scholtz, J., and Wiedenbeck, S. (1990a). Learning second and subsequent
programming languages: A problem of transfer. International Journal of Human-
Computer Interaction, 2(1), 51-72.

143. Scholtz, J., and Wiedenbeck, S. (1990b). Learning to program in another language.
In Proceedings of INTERACT "90, Amsterdam: Elsevier Science, 925-930.

144. Sebesta, R. W. (2002). Concepts of Programming Languages. Boston, MA:
Addison-Wesley.

145. Shannon, C. (2003). Another breadth-first approach to CS I using Python. In
SIGCSE '03: Proceedings of the 34th SIGCSE technical symposium on Computer science
education, New York: ACM Press, 248-251.

146. Singley, M. K., and Anderson, J. R. (1988). A keystroke analysis of learning and
transfer in text editing. Human-Computer Interaction, 3(3), 223-274.

147. Singley, M. K., and Anderson, J. R. (1989). The Transfer of Cognitive Skill.
Cambridge, MA: Harvard University Press.

148. Singley, M. K., and Anderson, J. R. (1985). The transfer of text-editing skill.
International Journal of Man-Machine Studies, 22, 403-423.

149. Sivula, K. (2005). A quaiitative case study on the use of Jeliot 3. Unpubiished
master’s thesis, University of Joensuu, Joensuu, Finland.

150. Soloway, E., Bonar, J., and Ehrlich, K. (1989). Cognitive strategies and looping
constructs: An empirical study. In E. Soloway and J. Spohrer (Eds.), Studying the Novice
Programmer. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 191-207.

151. Soloway, E., Ehrlich, K., Bonar, J., and Greenspan, J. (1984). What do novices
know about programming? In A. Badre and B. Shneiderman (Eds.), Directions in
Human-Computer Interaction. Norwood, NJ: Ablex Publishing Corporation, pp. 27-54.

121

152. Soloway, E., and Spohrer, J. C. (Eds.). (1989). Studying the Novice Programmer.
Hillsdale, NJ: Lawrence Erlbaum Associates.

153. Spohrer, J. C., Soloway, E., and Pope, E. (1989). A goal/plan analysis of buggy
Pascal programs. In E. Soloway and J. Spohrer (Eds.), Studying the Novice Programmer.
Hillsdale, NJ: Lawrence Erlbaum Associates, 355-399.

154. Spohrer, J. C., and Soloway, E. (1989). Novice mistakes: Are the folk wisdoms
correct? In E. Soloway and J. Spohrer (Eds.), Studying the Novice Programmer.
Hillsdale, NJ: Lawrence Erlbaum Associates, 401-416.

155. Stamouli, 1., and Huggard, M. (2006). Object oriented programming and program
correctness: The students’ perspective. In Proceedings of the 2006 international
workshop on Computing education research, New York: ACM Press, 109-118.

156. Tadepalli, P., and Cunningham, H. C. (2004). JavaCHIME: Java class hierarchy
inspector and method executer. In ACM-SE 42: Proceedings of the 42nd annual
Southeast regional conference, New York: ACM Press, 152-157.

157. Test Link. (2009). Educational Testing Service (ETS). Retrieved 29 December,
2009, from
http://www.ets.org/portal/site/ets/menuitem.1488512ecfd5b8849a77b13bc3921509/?vgne
xtoid=ed462d3631df4010VenVCM 100000221951 90RCRD& vegnextchannel=85af197a48
4f4010VenVCM 10000022195190RCRD.

158. Tew, A. E., and Guzdial, M. (2010). Developing a validated assessment of
fundamental CS1 concepts. In SIGCSE '10: Proceedings of the 41st SIGCSE technical
symposium on computer science education, New York: ACM Press.

159. Thorndike, E. L. (1906). Principles of Teaching. New York, NY: A. G. Seiler.

160. Van Haaster, K. (2003). Introductory programming in an OO environment: An
evaluation of a visual tool. Unpublished honors thesis, Monash University, Caulfield
East, Victoria 3145, Australia. ’

161. Van Haaster, K., and Hagan, D. (2004). Teaching and learning with BlueJ: An
evaluation of a pedagogical tool. In Proceedings of the Information Science and
Information Technology Education Joint Conference, Rockhampton, QLD, Australia.

162. Von Glasersfeld, E. (1990). An exposition of Constructivism: Why some like it
radical. InR. B. Davis, C. A. Maher, and N. Noddings (Eds.), Monographs of the
Journal for Research in Mathematics Education. Reston, VA: National Council of
Teachers of Mathematics, pp. 19-29.

http://www.ets.org/portal/site/ets/menuitei-n.1488512ecfd5b8849a77bl3bc3921509/7vgne

122

163. Wiedenbeck, S., Ramalingam, V., Sarasamma, S., and Corritore, C. L. (1999). A
comparison of the comprehension of object-oriented and procedural programs by novice
programmers. Interacting with Computers, 11, 255-282.

164. Wiedenbeck, S., and Ramalingam, V. (1999). Novice comprehension of small
programs written in the procedural and object-oriented styles. International journal of
Human-Computer Studies, 51, 71-87.

165. Wood, D., Bruner, J. S., and Ross, G. (1976). The role of tutoring in problem
solving. Journal of Child Psychology and Psychiatry and Allied Disciplines, 17(2), 89-
100.

166. Wu, Q., and Anderson, J. R. (1991). Knowledge transfer among programming
languages. In Proceedings of the 1 3 Conference of the Cognitive Science Society,
Hillsdale, NJ: Lawrence Erlbaum Associates, 376-381.

167. Wu, Q., and Anderson, J. R. (1990). Problem-solving transfer among programming
languages. For submission to: Human-Computer Interaction.

168. Zweben, S. (2009). Computing degree and enrollment trends. Computing
Research Association. Retrieved 5 December, 2009, from
http://www .cra.org/govaffairs/blog/archives/CR ATaulbeeReport-StudentEnrollment-07-

08.pdf.

http://www.cra.oro/govaffairs/blog/archives/CRATaulbeeReport-StudentEnrollment-07-

123

DEMOGRAPHIC SURVEY DATA FOR PILOT STUDY

APPENDIX A

‘Apmis 1011d 10} BIEP K9AINS oydeISowa(-V dand1

BUCH =
iznEg=9
de=t
i Rpocp =g
ucyItd FWOE =7
[WEyg =1
A=y 3%enguey Aay asuodsay
furlug FumnuesSosg
; KA € £o% ajep WEyy ueliysaly T 5052
g 2z zoer 1 £ Crs aiep BIp2)Y [EUSIQ Howoydesg g £052
€ s 5 5 3|EW #IuB135 UBWYsRY [3087
sandwes
£ £ £ C89 S|Epy Fuussulul UBWYEaY] T 5052
BIEMYTT
£ £ 059 8Ewsy sHEhYd uewysalg | $052
z z o5 Blewsy . ASolouyas) uowoudog 7 £052
: o : UIEWIBHU]
£ E € oTe BIEW Baua13g UEWYTAY T 7052
Jzindwon
LT 7 D63 SEWSY . ewsAyd uBwysaly T 1058
E £ ©fs . . BlEW . SASAyY UEWYSAM T £osT
S z - 00 . BIEW BIREW 1E3RIg Nowoydog T 5657
065 3lew SuusauiSul uswyssly [B&52
TIEMYLS
: z £ T - SlEWSY Qe reunt & £652
E LB . , sewsy sk Jownl-ald £ 96T
R T e T - oz v ey sushyy oWl 5662
31ZEQ AQNY usylhd dHd 1E3E4 3|dejs) WIISTEAET BABS 43 T 3IE8F 23|y 1dM3EU011Y 21035 JBpUED 1o{e 12427 2pod JEqWON Q)
|ENZIY, IpL=ITY] JIWEpEYY 3437
w5
asuapadry sfensue] BulwwesSoly

Aanng oydesdowag

walgng

124

PRE-TEST RESULTS FOR PILOT STUDY

APPENDIX B

‘Apn3s joqid 10] s1[nsal 1893-914 [~ Sy

JEITE!S) hay
ugyihg afenfue
asiw Aewiig
6T OLE9 0 1817 EESC 980°C €E€'07 | OOT'T OOM'T {380 {850 ST UE B UBYIAY
i8T°2 ..”.mﬁm.m ; w..m.m.ﬂ,.,. REE'L €EE- L EEED HEEG S LUPT - L3FT LBFT FEET UES B2
EI6'T &918 mﬂh,.ﬂ S BETOT &IT L £898°C OTET £38°T GTLQ STLT UER) ||BIBAT
£357T CBEER U89 000D EEEC - B9F0S | 0990 439D ODUE 00OT 199°T - BOST
{98z CUUSEEB. L ODUE CEEED- BEED- L9840 . 49970 89T . OOOE L98°C FEE€D L0682
o0 SCE'ET DOO'E OLO'T EEED- £330 SOOT £8%°T L9891 L8380 ooore AT
TSoC 833% €380 . 80T £39°T EEE'Q EEEC 333°0 893'¢r €68'C L3%8'T 389°C PEED SCSZ
LLEEY. 4991 EEET EEET- EEED- - {990 YEEC YECD £990 {997 bOST
- a9 w5 BRED DOOD EEED . 9580 - £3F0 PEED FEEC 3390 3530 ECRT
wg.mw ﬁg.m On&ﬁ EEET 18%°C L98°C L39'T L3881 L839°¢% ooUE 25582
8YT O BEED . HEEL SEETT. . OO0E ODOT EEEC 9390 . BOOT L9381 4997 ODOT e A v T4
BEET 9%%-. . §99% . £93°01 i CODE - D001 00T £3%°0 7 L1390 £330 HCEQ L3390 £33°C cose
Lo BEE'E) © GEE'E ”mm.\mda . DDVE - EEET EEEL 83530 - 85T ODOE LOD'T . wEED [22:3-84
YEET Tooe 839% €008 £89°'T OO0T EEED L3%8°C {383 89T HEEC L3830 £33°7 Bebe
SEE0 . TOOE T00'S - BEELT . EEEDr DOOT-€EEC 9950 . 5980 99T (89T 0OO0T OODE L6NZ
OO0 PEES.TSEET . 699E 0 EEED 000 EEEe . 983°0F ¢ 000T OODE (991 489G . I99T 96T
OOUE 000 T00h 0 STOOTEY GO0 T B00T ESED 0 0000 .. U0DDE L99T DOOE EEED OOOE - SebE
ERITES 33E1] usIIUYE] lledaas syzalag {Aus] {sanier {zimiswesed] {shelse (SAELE i soiEsBdy s3cER Jaquiny g1
SABLIY usn3aly suz1I2UNd il aim |E2ET
SuUgITIUNg sdon edoon
{adAy uonganb Ag) saioas {emie nday 4q) 534095
A3aung sadaouoy fandwod

125

POST-TEST RESULTS FOR PILOT STUDY

.
.

"Apmis 10[1d 10] SI[Nsal 15911804 *1-)) aInJL]

APPENDIX C

134310 Aay

ucyisg aZenfue)

ESITT AoEUELLd

TOYT TeBT TovE o021 COOL EEEDT EELD I35°0° LS50 LBYT HEEC HETT vESH BaUIky

LDPE.. " BOR'T FTELY L9UL FEED 00T . 000D PEED {997 OOC'T: YEEC 00T UBBI 23

BSE'Z BIFT EELH OIRT OIED SEIO LD TILO THLT OLSET TR Z9LT UBR{Y ||8IBAD
co0's . T0OT. S pasT EEEC EEG - L9A0 99307 O00E COU'E 988°C . COOE 80S2
49875 B39D CoESYT CDOOTUESED 000 L9590 1997 GRE'C- 9590 FEED - 2062
YEET £35% 93T DOCT EECC- £89°C o00T GOOE 1991 [S3% £39°T 9062
£39°7 BSTC TODR "9EE€'E QODE 0DOT SEED- 8390 £39°0 89T £EEQ 830 QOOE SOST
BEET . bEEE EEEC | BSEO .. L9950 £BYT L99°T.1990 . B9 OST
1000 BEEE - EEED- . - £99°C 1930 6660 L98'T (990 6660 E0SZ
YEET I00T ge€e- £390 4850 (39T ¢89°T 339C 931 TOST
4837 B30 (39 OCO'E . 000U EEEC 990 . 9990 (99T 000E £99C OO0E. 10SZ
Lo RS -k S <+) 85T ODOT EEED 8990 T pODT PEED [99T. L8990 | FEED 00GE
o0y WEE'E T WEE'L £99°T TEEC- COOT 1980 £89°C - DOOE OOD'E 0DGT o008 EEBD
LoOoE L9%% B9DR OoD'E OODT £EEC DOOT 198°C SEE'D OODE OCDT 93T gert
ooos - BegY @Wmm.m : G EESTr ODOT £EEC- - 33D m.wm.o COUE. DDOE L3970 £99°T 467D
et D Lo S v o 8 . COEEETr ODO'L EEED 9990 [I8%Q . 1951 pEED 000 £99°T 96T
COD'E 8%y 8% 0 EESt U DON'T- CO0T EEED ‘e 5007 COOE OODE 0007 ODOE 56T

BN, B3EJ] usINUYE] HeJaag s1zelgg {4uel {zan|ea {zimiswesed] (SARLE {SAELIE 4| simEesadg =31ZEQ 1aquiny J|

sABJIy uinizd] SUGITIUNS Sl ofwy =]
SUCII3UNY =deoq sdom

{adiy uoiizanb Ag) 531035 {ease 3idey Agl T2u033

Aaning sadasuoy sa3ndwoy walgng

APPENDIX D: PRE-TEST QUESTION RESPONSES BY QUARTILE FOR

Figure D-1.Proportion of pre-test students who chose each response for questions 1 through 12, divided

Correct Response: l:

into quartiles by score (high to low).

MAIN STUDY
Response % lQ1 Qa2 Q3 a4 Qs Qas az as [1] Q10 Q11 Q12

A 0.21 0.00 8.00] .7 x 038 0.02 0.02 0.00 0.02] £ 021 0.02 4.15 0.10
0.15) 0.02 0.00| ;.57 0,08, 0.03 0.03 0.00 0.02[, 0.5 0.02 0.13) 0.05

0.186) 0.00 0.00| 6.03 0.03 0.03 0.03 0.05| " 70.08 0.08 .08 0.07

0.08| 0.00 0.02 6.00 0.02 0.11 0.02 0.0} “%i.i0.05 0.07 0.02 0.03

B 0.02 0.00{, ' 0.23 0.00 0.03 0.05 0.00] 0.23 0.03 0.03 0.02] 0,05
0.03 0.02} -5 0.20 0.00 0.03° 0.02 0.000 0043 0.00 0.02 0.00 - 0.02]

0.02 0.02, 0.18| 0.00 0.03 0.11 c.00f . 043 0.03 0.00 0.07)% = 0,08

0.03 0.02 0.13 0.05 0.03 0.13 0.03].. . 011 0.08 0.00 0.07] 008

[4 0.02) 0.23 0.02 0.02 0.03 0.00 L 0.23 0.00 0.00 0.00 0.07 0.05
0.07] . 0.20) 0.05 0.03 0.08 0.00 0.16 0.03 0.02 0.00 0.05 0.08

0.05{% 7. DIR 0.07 003 0.10 6.02|: gis| 0.2 0.05 0.00 0.03 0.07;

0.05 0.20 0.07 0.00 0.15 0.001, " 0.3 0.05 0.07 0.03 0.13 0.11

o .00 0.02 0.00 0.05[S 0.85) 1, T DS 0.02 0.00 0.00] 10.18 0.00 0.02
0.00 0.02 0.00 0.11 3 o8| 0.08 0.00 0.0375 .. 830 0.00 0.05

0.02 0.05 0.00, 0.18(. . 007} o.oal 0.05 0.02 0.05 0,16 0.02 0.02

0.08 0.05 0.03 0.2007 " 0,08 “0.02) 0.08 0.05 0.03] "1 . 015 0.02 0.03

Total 0.98 1.00 0.98. 097 0.35 0.98 0.98 0.90 0.89 0.35 0.85 0.90

Response % Q13 Q14 qQis Q15 |awr Q18 a1s Q0 an Ja2 |a23 Jaza |
A 0.08 007 “* 0.5 0.00 0.10 0.11 o1 .01 0.05 0.02 0.03 000
0.10 0.07 0.08 0.05 0.03 0.05 0.05 011 0.02 0.03 0.05 0.03

0.07 0.13 0.03 0.08 0.02 0.02 0.03 0.07 0.02 0.60 0.03 0.02

0.15 0.13 0.03 0.05 0.07 0.10 0.08 0.16 0.07 0.07 0.03 0.03

B 0.00 0.00 0.05 0.03 0.10 0.03 0.02 0.00 0.15 0.02 0.05 0.02
0.02 0.02 0.03 0.07 0.08 0.02 0.02 0.05 0.08 0.05 0.07 0.02

0.03 0.00 0.03 0.08 0.68 0.00 0.07 0.07 0.10 0.08 0.05 0.07

0.05 0.03 0.02 0.3 0.10 0.02 0.02 0.07, 0.07 0.08 0.08 0.10

c 0.00 0.15 0.00 0.11 0.02 0.62 0.03 0.00 0.02 0.05 0.10 .20
0.00 0.08 0.03 0.02 0.08 0.05 0.10 0.00 0.05 0.02 0.08 0.5

002/ 007 0.07 0.00 0.1 0.16 0.03 0.03 0.03 0.07 011 0.08

0.03 0.03 0.13 0.02 0.07 0.08 0.08 0.00 0.08 0.08 0.08] 0.03]

o 0.16 0.00 0.00 0.07 0.02 .07 .08 0.07 0.00] .11 0.03 0.00
0.11 0.03 0.07 0.05 0.02 .07 0.02 .05 0.02 0.08 0.00 0.00

011 0.02 011 0.08 0.02 0.05 0.05 0.03 0.02 0.07 0.02 0.0

0.03 0.05 0.07 0.05 0.02 0.05 0.03 0.03 0.03 0.03 0.67 0.08

Total 0.97 0.57 0.2 0.89 0.2 0.89 0.92 0.92 0.80 0.37 0.39 0.87

Correct Response: [:]

Figure D-2.Proportion of pre-test students who chose each response for questions 13 through 24,
divided into quartiles by score (high to low).

126

APPENDIX E: POST-TEST QUESTION RESPONSES BY QUARTILE FOR

MAIN STUDY
Response % [a1 aa _ Jas [as a7 Jas Qs 10 Q11 Q12

A 0.2 0.00 0.18 0.03 0.02 0.00: 0.00 . 921 0.02] <%, 018 0.08
. 0.18 0.00 £ 0,05 0.02 0.05 0.02 0.03 0.15 0.05 0.11 0.13
018 0.03 0.05 0.03 0.10 0.03 0.03} ... 0.07, 0.05 0.13 0.05
5041 0.07):1 .. 9,02 0.02. 0.07 0.05 0.03[0.8 0.03 0.05 0.07
] 0.03 0.23 0.00 0.05 0.02 0.00}2: . 6.25 0.00 0.00 0.00] -~ 0.03

0.03 0.23 0.00 0.05 0.05 0.03. ©10.18] 0.03 0.03 0.03

0.02 9:11] 0.03 0.07 0.05 0.00. - 018 0.05 0.02 0.05|:
0.07 0.13 0.02 0.07 0.13 0.03} 1 ¥:0.10) 0.05 0.02 0.10{ . - 003
c 0.00}" 0.00 0.02 6.00 0.00]-.., -0.23 0.00 0.00 .02 0.07 0.11
0.03(0.00 0.05. 0.07 0.03[: i 0:15 0.03 0.05 0.05 0.08 0.03
0.03 0.10 0.08 0.08 0.05 0.1 0.02 0.05 0.03 0.05 0.05
0.02 0.03 0.07- 0.15 0.03) 0.10 0.10 0.10 0.08 0.08 0.10
D 0.00 0.02 0.05 016 na 0.02 0.00 0.02f L 024 0.00 0.02
0.00 0.00 61505 01l 0 0an 0.85 0.00 0.00{%: - 0i10 0.00 .02
0.00 0.00 0.08) U005 . 005 0.10 0.02 0.05 0.41 0.00 0.03
0.03 0.03 0.16) V002 - 0.02 0.08 0.03 0.03 + 913 0.02 0.05
Total 0.95 0.98 1.00 0.98 0.98 1.00 1.00 0.93 0.95 0.95 0.93

Correct Response: ::]

Figure E-1.Proportion of post-test students who chose each response for questions 1 through 12,

divided into quartiles by score (high to low).

Response %]Q13 Q14 Jai1s |a6 [a17 [g18 [a1s [az0 [q21 Jazz _ |a23 Jazs
A 0.10 o1s| - 0a6 000 0.08 0.05 oas[- 020! oo 0.00 0.00 0.00
0.13 o8] o1 0.07 0.07 0.03 o0 . oa] 005 0.05 0.05 0.02
0.67 013 .03 0.08 0.05 0.05 0.03 007 008 0.07 0.07 0.08
0.15 0.13 0.05 0.10 0.63 0.10 0.08 0.03 0.05 0.07 0.10 0.02
B 0.00 000 000 003 0.30 0.05 0.02 ool . 018] .03 0.02 0.00
0.62 000 £.05 0.08 005 0.0 0.02 ool o1s] 003 0.08 0.07
0.07 0.03 0.03 .08, 0.7 0.10 0.03 0.08] ..0.03 0.07 007 008
0.03 000 0.08 0.11 0.05 0.11 0.05 o1o] - 007 0.03 0.10 0.08
C o00] — o010 o3 o0 0.02 0.03 0.02 0.00 000 002 o7 0.23
0.00] . - a1 002, o000l 008 .05 0.0 0.03 0.02 007 - co08 007
0.02| 005 010 005 011 0.03 0.05 0.03 0.02 007t o008l 007
003 005 o008 o .13 0.02 007 807 008 0.5 0.02 003
o 0.15 000 0.03 0.00 0.05 0.10 0,03 0.05 0o o020 0.00 0.02
010 002 .05 0.08 003 omn 0.07 0.03 0.03 0.08 0.02 0.07
0.08 0.02 0.05 0.02 000 - 805 0.08 0.03 0.08 0.63 0.02 0.05
._605] 005 0.05 0.02 0.05 0.02 9,02 0.05 0.03 0.02 0.03 0.08
Total 0.93 0.92 093 0.93 097 093 0.85 0.90 087 097 0.93 0.87

Correct Response: I:j

Figure E-2. Proportion of post-test students who chose each response for questions 13 through 24,
divided into quartiles by score (high to low).

127

http://-o.il

128

APPENDIX F: ITEM DISCRIMINATION ANALYSIS FOR PRE-TEST FOR
MAIN STUDY

1 Question Number Q1 Q2 Q3 Qa Qs Q6 Q7 Q8 Qs Q10 Q11 Q12
item Facility Total
8.607, 0.803 0.738 0.295 0.361 0.459 0.672 0.607 0.492 0.689 0.393 0.230
ftem Facility Top
27% 0.875 0.938 0.938 0.688 8.625 0.750 0.938 0.875 0.813 0.750, 0.563 0.188
Item Facility Bottom
27% 0.313 0.750] 0.500 0.000 0.188 0.063 0.438 0.438
Item Discrimination : . ’
. 0.438 0.538| 0.438 D.6838 0.500]- | 0.438
Estimated Index of
Item Difficulty 0.554 0.824] 0.719 0.344 0.406 0.406 0.688 0.656
Question Number |Q1 [az [as aa __ Jas las a? as [as aw _ Joun Q12
Question Category Bnsics Logical expressions Conditionals For loops Arroy
w/o loop
Index of Discrimination Scale: L
Very good 0.40 and up
Reasonably good 0.30100.39
Marginal 0.20100.29
Poor Below 0.19
Figure F-1. Pre-test item discrimination analysis for questions 1 through 12.
Question Number (Q13 Q14 Q15 Q16 Q17 Qis Q19 Qzo Q21 Q22 Q23 Q24
Item Facility Total
0.426 0.328 0.311 0.148 0.361 0.230 9.180 0.525 0.393 0.295 0.377 0.459
item Facility Top
27% 0.688| 0.563 0.625 0.438 0.375 0.250 0.313 0.688 0.563 $.438 0.375 0.750]
Item Facility Bottom
27% 0.125 0.125 0.125 0.063 0.375 0.188 0.125 0.625 0.250 0.125 0.313 0.125
item Discrimination
0.563 0.438 0.525
Estimated Index of
Item Difficulty 0.406 0.244 0.375 0.250 0.375 0.218 £.219 0.656 0.406 0.281 0.334 0.438
questionNumber [q13 Ja1s Jais Jais |aw? Q18 Qs Ja20 Jan a2 [q23 _ |a2
Question Category While Joops Functions Wk tware Recursion Classes ond objects
Engineering
Index of Discrimination Scale:
Wery good 0.40 and up
Reasonably good 0.30t00.39
Marginat 0.20100.29
Poor Below 0.13

Figure F-2. Pre-test item discrimination analysis for questions 13 through 24.

129

APPENDIX F: ITEM DISCRIMINATION ANALYSIS FOR PRE-TEST FOR
MAIN STUDY

Reliabili
R 0.568
Average 5core
11.402
Standard Deviation
3.626
Standard Error of
Measurement 2.382

Figure F-3. Reliability, average score, standard deviation, and standard error of measurement
statistics for pre-test.

130

APPENDIX G: ITEM DISCRIMINATION ANALYSIS FOR POST-TEST FOR
MAIN STUDY

Question Number Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Qs Q1o Q11 Q12
tem Facility Total .
0.539 0.683 0.705 0.295 0.344 0.392 0.520 0.705 0.508 $8.557] 0.475 0.197
ftem Facility Top
27% 0.875 1.000 0.938 0.638 0.625 0.875 0.938 0.938 0.875 0.813 0.750 0.125
item Facility Bottom
2% 0.438 0.500 0.500 0.063 0.063 0.063 0.375 0.375 0.213 0.500]
Item Discrimination = N - G
0.438 0.500] 0.438 0.625! 0.563] 0.813 0.563 0.563 0.56
Estimated Index of
item Difficufty 0.656 0.750 0.718 0.375 0.344 0.463 0.656 0.656 0.593 0.656 0.465 0.125
Question Number [Q1 [a2 [a3 Qs [as [as Q7 [as Jas a1 [au Q12
. . . " Array
uestion Cate, Basics Logical expressions Conditionals Forioops
Q gory g p (4 w/o loop
Index of Discrimination Scale:
Very good 0.40 and up
Reasonably good 0.30t00.39
Marginal 0.20100.23
Poor Below 0.1%
Figure G-1.Post-test item discrimination analysis for questions 1 through 12.
Questicn Number (Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24
Item Facifity Total
0.377 0.211 0.361 0.262 0.262 2.279 0.197 0.410 0.377| 0.328 0.393 0.393
Item Facility Top
27% 0.625 0.438 8.625 0.750 0.375 0.438 0.188 0.813 0.750 0.813 $.813 0.875
Item Facility Bottom
2% 0.188 0.188 0.188 B.125 0.250 0.063 0.063 0.125
tem Discrimination
0.438 0.438 0.688 0.500 0.750 0.750 0.750]
Estimated Index of
item Difficulty 0.406] 0.313 0.406 0.406 0.281 8.250 0.125 0.469 0.500 0.438 0.438 0.500
Question Number Q13 [Q14 Q15 Ja1s |awr Q1s q1s a0 |an az a2 Jaa
Question Category While ioops Functions %’?ﬁl,"‘,’{i,; Recursion Closses and objects
CrRgineenng
Index of Discrimination Scale:
Very good 0.40 and up
Reasonably good 0.30t0 0.39
Marginal 0.20100.29
Poor Below 0.19

Figure G-2.Post-test item discrimination analysis for questions 13 through 24.

131

APPENDIX G: ITEM DISCRIMINATION ANALYSIS FOR POST-TEST FOR
MAIN STUDY

Reliabili
Y 0.749
Average Score
10.730
Standard Deviation
4.586
Standard Error of
Measurement 2.297

Figure G-3.Reliability, average score, standard deviation, and standard error of measurement
statistics for post-test.

132

APPENDIX H: CORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR PRE-TEST FOR MAIN STUDY

Correct Response (CR) Percentages

100.0
30.0
80.0
70.0
60.0
50.0 -
40.0
30.0
20.0
10.0

0.0

M JavaCR % {N = 13)

Percent

B Visual Basic CR % (N = 22)
@ C4++ CR % (N = 26)

Q1 Q2 Q3 Q4 Q5 a6 @7 Qs

Question Total N =61

Figure H-1.Correct response percentages for questions 1 through 8 of pre-test.

Correct Response (CR) Percentages

Percent

wlavaCR% (N = 13)
& Visual Basic CR% {N = 22)
Gt CR % (N = 26)

Q9% Q10 Q11 Q1z Q13 Q14 Q15 Q16

Question Total N =61

Figure H-2.Correct response percentages for questions 9 through 16 of pre-test.

133

APPENDIX H: CORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR PRE-TEST FOR MAIN STUDY

Correct Response (CR) Percentages

100.0
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0

0.0

JavaCR% (N = 13)

Percent

1 Visual Basic CR % [N = 22)
& Che CR % (N = 26)

Q17 Q18 Q18 Q2¢ Q21 Q22 Q23 Q24

Question Total N =61

Figure H-3.Correct response percentages for questions 17 through 24 of pre-test.

134

APPENDIX I: CORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR POST-TEST FOR MAIN STUDY

Correct Response {(CR) Percentages

100.0
90.0
80.0
70.0 +
60.0
50.0
40.0
30.0
200
10.0

0.0

BlavaCR% {N=13)

Percent

@ Visual Basic CR % (N = 22)
1 C++ CR Y% (N = 26}

Q1T Q2 Q3 Q4 a5 Q6 Q7 Qs

Question Total N =61

Figure I-1. Correct response percentages for questions 1 through 8 of post-test.

Correct Response (CR) Percentages

Percent

NJavaCR % (N = 13)
B Visual Basic CR % (N = 22}
#C+y+e CR% {N = 26)

Q9% Qi0 Q11 Q12 Qi3 Q14 Q15 Qle

Question Total N =61

Figure I-2. Correct response percentages for questions 9 through 16 of post-test.

135

APPENDIX I: CORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR POST-TEST FOR MAIN STUDY

Correct Response {(CR) Percentages

100.0
90.0
80.0
76.0
60.0
50.0 -
200 +
10.0 -

0.0 »§

Q17 Q18 Q19 Q20 Q21 Q22 @23 Q24

§JavaCR% (N = 13}

Percent

® Visual Basic CR % (N = 22)
7 C++ CR % (N = 26)

Question Total N =61

Figure I-3. Correct response percentages for questions 17 through 24 of post-test.

136

APPENDIX J: INCORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR PRE-TEST FOR MAIN STUDY

Question 1

Question 2

Distracter

50.0 -
400 -
- £ 300
@ & H
2 B JavalCR % & H @Java ICR %
& & 200
® Visual Basic ICR % B Visual Basic ICR %
Coe 1CR % 00 # 0ot ICRY
0.0 |
B C D A B D
Distracter Distracter
Question 3 Question 4
60.0
50.0 -
: 400 -
£ 300 ¢ £ :
W i [H
g ®JavalCR % g 300 ®Jave ICR %
H : H
& 200 2
: 8 Visual Basic ICR % 200 - B Visual Basic ICR %
100 = i £CorICRY 100 ¢ Cer ICR Y
00 -+ - L 0.0
A C D B C D
Distracter Distracter
Question 5 Question 6
60.0 50.0
50.0
20,0 e
= i £
« @«
$ 300 0 = Java iCR % g & JavalCR%
Y | Y
200 + 8 Visual Basic ICR % 8 Vicuai Basic ICR %
10.0 % C+4 ICR % @0t ICRY
8.0
A 8 C A 3 4
Distracter Distracter
Question 7 Question 8
o I 500 - -
H H
40.0 e a0.0 5
= £ 300
@ @
e N Java ICR % ¥ © Java ICR %
& &£ 200
& Visual Basic ICR % B Visual Bas:¢ (LR %
CCorICR Y% 1o G ICR %
— 0.0

A C o)

Distracter

Figure J-1. Incorrect response percentages for questions 1 through 8 of pre-test where:
Java N = 13, Visual Basic N =22, C++ N =26, Total N =61.

137

APPENDIX J: INCORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR PRE-TEST FOR MAIN STUDY

Question 9

50.0

30.0

Percent

6.0

40.0 -

Distracter

Question 15

200 -

100 -

Distracter

£ Visudl Basic ICR %

£ Ot ICR%

NJavaICR %
& Vistial Basic ICR %

< Cae ICR %

Percent

s E 30.0
£ stavalCR % H ®JavalCR %
o &
& Visual Basic 1CR % B Visual Bosic ICR %
C++ ICR % B Cer ICR %
8 C D A B C
Distracter Distracter
Question 11 Question 12
700 sy 500
60.0
50,0 e
§ 00 o i] ¢ LavalCR %
E 300 & JavalCR % ;9:‘ 8¢ Java %
Visual Basic ICR % B Visuad Basic ICR %
200
10.0 - - FCr ICRY CrHHICR Y%
6.0 -
B C o A C D
Distracter Distracter
Question 13 Question 14
50.0
H £
4 NiavalCR Y% b4 ®javalCR %
% S
a a

B Visual Basic ICR %

L0 ICR %
A B]
Distracter
Question 16
#wIavaiCR %

@ Visual Basic ICR %

Coe IR %

Distracter

Figure J-2. Incorrect response percentages for questions 9 through 16 of pre-test where:
Java N = 13, Visual Basic N =22, C++ N =26, Total N = 61.

138

APPENDIX J: INCORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR PRE-TEST FOR MAIN STUDY

Question 17

Percent

Java ICR %

& Visual Basic ICR %

Percent

50.0

Question 18

®JavaitR %

& Visual Basic ICR %

3O ICR% C++ICR %
A C o A B C
Distracter Distracter
Question 19 Question 20
50.0 50.0
0.0 +
2 H
@ @
T = Java ICR % 5 wlava ICR %
o a
B Visud! Bas:c IR % @ Visual Basic ICR %
nCHICR % 2 CrriCR %
A 8 C B C]
Distracter Distracter
Question 21 Question 22
50.0
i
40.0 A s -
H £
@® a
L % JavaiCR % =4 sJavalCR Y%
& &
8 Visual Basic ICR % # Visual Basic ICR %
= C+4 ICR % wCat ICR %
A C o] A 8 C
Distracter Distracter
Question 23 Question 24
50.0 - - - - e
400 K
< € 300
3 &
2 ®Java ICR % 2 wJavaiCR %
& & 200 -
@ Visual Bas ¢ ICR % Visual Basic ICR %
S CorICRY 100 - CHICR Y
00 -
A 8 D A B D
Distracter Distracter

Figure J-3. Incorrect response percentages for questions 17 through 24 of pre-test where:
Java N = 13, Visual Basic N =22, C++ N =26, Total N = 61.

139

APPENDIX K: INCORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR POST-TEST FOR MAIN STUDY

Question 1

Question 2

500
40.0
£ £ 300
@ 8
= S JavalCR% = S lavaltR %
@ <
a o 200
B Visual Basic ICR % & Visual Basic ICR %
C+ ICR % 100 @0+ ICR%
00
a C D a D
Distracter Distracter
Question 3 Question 4
50.0 -
40.0 Ao
T 300]
@ ¥
4 @ Java (R % = # Jave ICR %
o <
a 200 - a
& Vizual Basic ICR %) B Visual Basic ICR %
109 5 Cer ICRY 5 Cot ICR %
0.0 -
A C D C o]
Distracter Distracter
Question 5 Question 6
50.0
400 A
Z 300 A b
w @
2 S tavalCR % = $lavailR %
& 200 &
& Visual Basic ICR % & Visual Basic ICR %
10.0 SCHrICR Y% o Crd ICR %
0.0
A B C B C
Distracter Distracter

Question?7

#1avalCR %

Percent

B Visual Bas ICR %

O iR Y

Distracter

Percent

50.0

300

26.0

10.0

G.0

Question 8

Njava IR %

& Visual Basic ICR %

2 Crd ICR Y

Figure K-1.Incorrect response percentages for questions 1 through 8 of post-test where:
Java N = 13, Visual Basic N =22, C++ N =26, Total N =61.

140

APPENDIX K: INCORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR POST-TEST FOR MAIN STUDY

Question 9 Question 10

50.0 50.0 -

40.0

40.0

@ JavalCR %

Percent
Percent

s JavalR%

8 VisualBosic ICR Y% B Visual Basic 1CR %

C+ICR Y% seCHe ICR %

8 C
Distracter Distracter

Question 11 Question 12

Percent

§javalCR % wlava IR %

Percent

B Visual Basic ICR % B Visual Basic ICR %

TCrrICR Y%

SO ICR%
B c D A c 3}
Distracter Distracter
Question 13 Question 14
500 - . 60.0 - .
S 50.0
. . 400
g §
4 & JavaiCR % 3 300 # JavaCR %
& &
8 Visual Basic ICR % 200 & Visual Basic ICR %
s G ICR % 10.0 ¢ €14 ICR %
00 | ¥
A E) C A 8 3}
Distracter Distracter
Question 15 Question 16
50.0 ~-—ee - -
390
£ 300 ' 2
@ @
2 : wlava lCR % = # Jova lCi %
& 200 &
‘ # Visual Basic ICR % 8 Visual Sasic ICR %
100 Cos ICR % Cr 1CR %
0.0 -
8 C D A [)

Distracter Distracter

Figure K-2.Incorrect response percentages for questions 9 through 16 of post-test where:
Java N = 13, Visual Basic N =22, C++ N =26, Total N =61.

141

APPENDIX K: INCORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR POST-TEST FOR MAIN STUDY

Question 17

S0.0

50.0 s

Question 18

€ £
@ (Y
E = JavalCR % £ s JavaICR %
a
Visuol Basic ICR % 8 Visual Bosic ICR %
1 Ces ICR % i Cor ICR %
A C D 8 C
Distracter Distracter
Question 19 Question 20
600
50.0
. 400 -
5 5
5 30.0 m)avalCR % E @JavalCR %
o o
20.0 @ Visual Basic ICR % & Visual Basic 1CR %
10.0 2CHICR Y% 0+ ICR %
0.0
A B C C D
Distracter Distracter
Question 21 Question 22
500 -

H H
e ®JavaiCR % 2 & JavalCR %
& &
@ Visual Basic ICR % 8 Visual Basic ICR %
s CHHICR % i Cre ICR%
A C D 8 C
Distracter Distracter
Question 23 Question 24
s00 - e s 50.0 -
20,0 < v s 40.0 -
€ 300 i £ 300
@ 3
= ®JavaiCR % s = JavalCR Y
& 200 & 200
Visual Basic ICR % # Visunl Basic ICR %
10.0 i Coe ICR% 10,0 - s CerICR %
Q.0 co -
A 8 D B D
Distracter

Distracter

Figure K-3.Incorrect response percentages for questions 17 through 24 of post-test where:
Java N = 13, Visual Basic N =22, C++ N =26, Total N = 61.

APPENDIX L: DEMOGRAPHIC SURVEY DATA FOR MAIN STUDY

ID_Number Completed_ Language_ Acad _ Major Gender Ethnicity Age_Range ‘lmmediate_ SAT_Math_ ACT_Math_
Study Class Level College_Entry Score Score
€S04113-5 1 1 Transfer [M Other 20 Y 999 99
C€504113-2 1 1 Freshman CS M Caucasian 22-30 N 999 99
C€504113-1 1 1 lunior cs M Asian {non-Indian} 20 Y 99 99
C504113-3 1 1 Sophomore cs M Caucasian 22-30 Y 500 99
€504113-6 1 1 Transfer [& M Caucasian) 22-30 Y 999 93
'€504113-4 1 1 Other N/A M :Caucasian 30+ Y 680 99
€S04113-10 1 1lunior CS M ‘Caucasian 21 Y 995 99
C504113-8 i 1 junior = s . M Caucasian 21 ¥ 359 9%:
C€S04113-9 1 1 Sophomore S M Caucasian 20 Y 660 99
C504113-7 1 1 Transfer s ™ Caucasian 22-30 Y 993 99
C504114-17 1 1Freshman CS M Caucasian 18 v 640 "9
C504114-18 1 1 Freshman (S M Caucasian 19 Y 550 99
CS04114-24 1 1 Freshman CS M Caucasian 19 Y 660 31 {Overall)
€504114-23 1 1 Freshman CS M Caucasian 18 Y 700 99

ID_Number Alice Basic € €_PlusPlus C_Sharp Cobol Html IDL ‘Java JavaScript Pascal Perl

PHP Python SQL Verilog_HDL Visual_Basic

5041135
iCcs04113-2
C504113-1

€504113-3
£504113-6
Cs0a113-4

C504113-10
-CS04113-8
1C504113-9
C504113.7
1C504114-17

€504114-18

504114-24

€504114-23

Figure L-1.Demographic information for the 14 Java students; the highlighted records

SO O00 000w o0wo oo
QOO0 ONOOOQO 00O
0O DO WO CONMOOD MW
T OO WWw D WD 0Wo WO W

O8O0 R0 000000

COOO0O0O0DO VOO0

o000 OO0 o WO oo NOQO

[= T =T T N e~ e S o T o B = B = B e I = B =]

W W N ORNNWNNNNNW

D ONONDO OO QO QN

(= =R == =y == Bl = Y e B o B o B = B = B0 oo B o0]
OO0 ONDH O OO0

OO0 O0O0T OO O 00D

OO0 00K OCOoC 000000
D00 00000 VOO0 00

represent students who only completed the first part of the study.

(== R = = R B - - = B« B B o

W W o oWwo We N WWwo o w

142

APPENDIX L: DEMOGRAPHIC SURVEY DATA FOR MAIN STUDY

EID_Number

C504141-22
C504141-25
C504141-26
50414128
€504141-31
[C504141-27
50414124
C504141-23
[CS04141-29

C504141-18

:C504141-17
[Cs04131-21
50414120
C504141-16

CS04141-15 |

C504141-10
5041414
1504141-1

C504141-13

[C504141-14
C504141-12
€504141-3
Cs041415
C504141-8
C504141-11
5041412
C504141-6
5041417
C504141-9

ID_Number Alice Basic C C_PlusPlus C_Sharp Cobol Html IDL Java JavaScript Pascal Perl PHP Python SQL Verilog_HDL Visual_Basi

C504141-22
€504141-25
€504141-26
C504141-28
€504141-31
C504141-27
€504141-24
€504141-23
'€504141-29
C504141-18
C504141-17
C504141-21
1€504141-20
€504141-16
C504141-15
{C504141-10
‘c50a181-4
£504141-1
50414113
.C504141-14
.C508141-12
£504141-3
iC504141-5
1C504241-8
C504141-11
5041412
£504141-6
Cs04141-7
C504141-9

Completed_ Language_ Acadén;ic_)

Study Class Level
2 Junior
2 Freshman
2 Senior
2 Junior
" 2 Senior_
2 Senior
2 Senior
2 Sophomore
2 Senior
2 Junior
2 Sophomore
2 Junior
2 Junior
2 Junior
2 junior
2 junior
2 Freshman
2 Transfer
2 Freshman
2 Freshman
2 Sophomore
2 junior
2 Freshman
2 Junior
2 junior
2 Transfer
2 funior
2 Freshman

Ik b b b O b ke kA ke ke ke kb s kb he kA R D A O O ks O O b b

2 Senior

0O SO0 OO0 OO0 000 WwWNOOIO0 00000 CD
2O 00000 O NOO00O000ONOWOIWDmMOHOOHOaN
N OO0 O OONDO0N 0000w EO NGO 00
WO WNWNGOONOCSWONOOOWOLOQWNDDWEERKROQOOO

000 0O 0000000 N0 0000000 00000000

Majc‘r

Mis
Mis
MIS
wmis
IS

MKT, MiS

MIS
Mmis
MiS
Mis
Mis
Mis
Mmis
Mis
MiS
Mis
Mis
Mis
Mis
Mis
Mis

MiS, RTF

Mis
MIs
MIS
LA

Mis
Mis
Mis

DO 00000000 00a0NNa0No0aa o0 noo0on

DD 00000000 NOO0000C0ODO6aHOoLn000

zgzggzﬁzzgzzzzzg:zzzzz

Gender Ethnicity

¥ African American

M Caucasian
M Caucasian
M Caucasian
M . Caucasian
F Caucasian
M Caucaslan
Other
Other
Hispanic
Caucasian
Caucasian
-Caucasian
Caucasian
Caucasian
Other
Caucasian
Caucasian_
Caucasian
Caucasian

Caucasian
Caucasian
Hispanic
Caucasian
Caucasian
Hispanic

Caucasian

WOO0D 0000 WO WO 000000000000 WwNO

Astan (non-indian})

Asian (non-indian}

N O R D W00 WwWo o P OOoONODODOLLDOOL OOLOLAQQ OO O

C 20

Age_Range Immediate_

College_Entry Score

20
19
2230
21
2230
2230
20 -
19
22-30

20
22-30
22-30
20
20
21
i8
21
19
18
20
21
18
20
21
21
2
18
21

R R I e T T I S A - S e e e A A T 3

<

OO0 0000000000000 00CO0EO OODON OO0
(SR R R K= ~ I = I~ I - T R B — T~ S = T = N = R = R = i = R = I - T SR - = - I~
O 000 OO0 ONOOCOOCO000C000G0 OO0 GO0 O
OO0 00000000000 00000000 G006 OO0 oo
CO 0D OO0 0 0000000000000 00000000

SAT_Math_ ACT_Math_

1150

999
660
993
550
680
999
985

-999

998
999
935
999
3999
999
993
600
993
660
610
999
959
600
500
999
993
610
999
999

000 o000 cCcC0o 00 o0l o0odoceo oo aGodd

Score

9
99
59
EE
39
99
99
99)
99
99
99,
99
99
99
99
16
99
99
99
99
99
99
99
99
99
99
99
99
99

W e N WWw s W W oW W W W W WR W N W W WWW W W W N

Figure L-2.Demographic information for the 29 Visual Basic students; the highlighted records
represent students who only completed the first part of the study.

143

APPENDIX L: DEMOGRAPHIC SURVEY DATA FOR MAIN STUDY

ID_Number ‘Cnmpleted; Lar;gu”age_ Academic_

€504103-2
1CS04103-21
CS04103-15
/CS04103-6
CS04103-5
€S04103-7
€504103-8
€504103-3
1€504103-23
iCS04103-4
€504103-19
1C504103-9
'C504103-1
/CS04103-14
'CS04103-11
€504103-10
'C504103-17
.C504103-12
CS04103-16
‘CS04103-22
{€504103-20
cs172-1
cs172-2
SE103-1
C5132-1
iCS132-2

Study Class tevel

3 Freshman
3 Freshman
3 Freshman
3 Freshman
2 Freshman
3 Freshman
3 Freshman
3 Freshman
3 Freshman
3 Freshman
3 Freshman

3 Freshman
3 Freshman
3 Freshman
3 Freshman
3 Senior

3 Freshman
3 Senior

3 Freshman
3 Freshman
3 Freshman
3 Freshman
3 Freshman
3 Senior

3 Freshman

[R e T L T o T T e I I I)

3 Freshman

African American

Asian {(non-indian}

Major Gender Ethnicity
ME F Caucasian
ECE M Caucasian
ME Ll Caucasian
ECE M Caucasian
ECE M Caucastan
ME M Caucasian
ME M Caucasian
ME ‘™ Caucasian
ECE M Caucasian
ECE M Caucasian
ME] Caucasian
ME M Caucasian
'ECE M Caucasian
ME M Caucasian
ME F Caucasian
ECE F Caucasian
MATH, PHYS F Caucasian
ME M Caucasian
PHYS M
ECE M Caucasian
ECE %] Caucasian
cs M
s M Caucasian
SE 1] Caucasian
MATH M

MATH, ECON M

Asian (indian)

Caucasian

Ag‘e‘_Range Immediate SAT_Math_-ACT_Math_

19
19
19
18
18
19
19
18
18
19
18
19
18
‘19
19
19
22-30
18
21
19
18
19
18
i8
22-30
18

JD_Number Alice Basic € C_PlusPlus €_Sharp Cobol Html IDL Java JavaScript Pascal Perl

PHP Python SQL Verilog_HDL Visual_Basic

College_Entry Score

B A R I T T T S R R i R e T T T e e e

959
570
710

620

560
999
780
720
680
630
700
710
550
630
680
670
690
630
999
680
999
540
999
740
710
999

L]
99
99
99
99
39

99-

99
99
99
93
99
99
93
99
99
99
99
99
99
99
59
99
99
34
99

i€S04103-2
€504103-21
C564103-15
:CS04103-6
'CS04103-5
C504103-7
€504103-8
€504103-3
CS04103-23
‘C504103-4
C504103-19
C504103-9
C504103-1
:CS04103-14
.C504103-11
€S04103-10
.CS04103-17
C504103-12
:C504103-16
C504103-22
:CS04103-20
CS172-1
:C5172-2
{SE103-1
€5132-1
€5132-2

Figure L-3.Demographic information for the 26 C++ students; all of the C++ students

L= T = T~ I = T S O I = K= T~ T — T T - B - I = Y Y~ Y - I = Y I = = B = =]
OO 0D D00 0000 ONO00RO0N 0 ONO
(=T~ R = R === T — B~ B - Y -~ S - B = S = B = o= B = = I~ = O = =y = |
WWWwWwWwRNNWRERNWW®WNKNNWGRRMRDORN®EWN

(=2 =T R = R < I -~ I~ B~ = Y — N — - T -~ T~ B - T == N = = Y = B =~ B~ B A = A~ A ~)

OO 000000000000 00000000 e
Q0D AU 00000 0N a0 o Dwhoo o000 oo0

completed both parts of the study.

OO0 DO 0000000000000 00000

WS OO0 00D OWwWaENO0D D000 0000

DO N WO D000 NDD000 000 C 0N

QRO D0 D000 000 000000000000

OO0 000000000800 000000C000 00

SO0 0000000000000 0000

QOO 000D 000 0000000000000 00

QO QOO0 00 0000000000000 00 0o0Ng

OO 0000000000000 N0000 R 000

=)

MANOoO 00 WO Wweo wik o330 0o oo o 0o

144

145

DEMOGRAPHIC SURVEY FOR MAIN STUDY

APPENDIX M

‘7 pue | sofed ‘Kaains orydeiSowa(q ‘-] dand1g

730 g ofeg

(*3ueqq wopsanb sy a4a} A2ill BOA *J0MSUY 01 YSlm
10U QP 10 'J{8931 10U Op NAK 31 FION} (21098 YW 10 Mok sam I8 LIV 6y 4001 nod 1 (11

I

ey wonsanb Syl 9AnS] LBur N0A ‘1assud o] YLy
30U Op 10 “f|Eo0d Jou Op 10K 3] 1FIORY) (4008 B LV'S InoA sem 18YM ‘| V'S ot 4001 104 3 {pt

[GOEET umg_.aloma,a_ EERY

SIETg (FAIA [uogisd | | _E

Gasf | i 3]]

3FIS 2qyNguy-] | RIS | ddunauny | eI | uuuau_ag

SDBIIUE] $1Y) AUISD JANBIA0I B 50 — ERERUGECON
{BenBub] 5ilj) Ul 6931100 EE&%.& PASY Paseid put xoco av

Cifn 53_55 SUGIB0IL 1L O] PoLt) 9AUL) SUIS

(PReNBLIT] 0y JNOQE 31 € AOLD] POA PuAI UR0) JYALS

‘mopeq, sieadde JBy-a[Eos ay) Buisn yduxu Aoy AF1eads aseald ‘souauedxa Bununyeifiord oasy
104 pojEsIPTy NOA ToIym tim safienBae] asor 104 "g# tonsand 03 ouq S13391 onsenb suy (6

T30 | 28vg
(10305 asesill) SBenHnE] Q) | 01
Jisue] [BISTA | [| uod T g | ted [] (83884 | 0 | dudgnavy |
e O]~ +0lO] o1l SEE | T | VO

“(Adde yewy 118 yooyp ossoyd) eouvuedxe
wiedlosd 2a8t no& Y21y Yitas asotfi a)sotput aseayd “xotaq passy safienfluy ayy woxd (8

Y) MDY i

spoonas yBiy Sumspdwod e WS ofoljos fawa noA prg (L

NN A4
Loi 851 LT

4(38um3) 0B anok siregp (9

z[af or] O]

Paxiil 30 18150 ST |
UBoHY UBALEY URISESDE | [
(RISTHUGHGNS Tipu] WOL) TSy | [| (GaUHU05qns Gaipu] wiol) 100 wisy | [

D)D

s mef sy (5

sy | c) 0

(apuafmod s)enm (t

¢Aprus Jo voug Jofeur mos stjem (g

{Atosds asea)c) PO T

! :
wjsunil | sowes [| JoWnf [T3 | Asowmoqdos | (3] uedtsoid | =]

{{aas] onopnow mos sy ey (7

[|

U5AIE U2aq 2ARY N0A 12 ((11) JoqIUNE uousdB AP oyt 1w (]

Tenuspuo? jdos oq [(Im s1d4sUR
oA ‘ajqissod s8 K{2Iemade 8 pus Apssuoy sz sionsanb s 1omsur ssealy vedidined o) paardy
QABY NOA YOIIM U1 APTIS 042 30 And 58 voNRULICU] puno8oTq spaoad 03 NOA Syse Keans sy

daaang sdodfowscr

-0 oPfun A SPURA 'Id AUV g Magoy i

siiaoue)) Bupuwisaferg A1opnrpoauy jo fupnasa uapns no
sayproaddy Suryora I samaudsi yo paudiag og) Jo uoneBusean) wy 13737, 199104

http://lfuiatin.ee

146

ATTITUDE SURVEY FOR MAIN STUDY

APPENDIX N

'z pue 1 saSed ‘AoAlns apnimy *I-N 2InS1q

g0 7 9fed

*dou0198 Japdwod uy
Imuls st quisy 0f apdosd syl 1uap |

UPIYS AW
Jandiucd poud A[Tevt € s1om]
J1 550] 9w ox1] ojdoad oxpw pom 3]

144

‘MALY BUO aUl Jagerd | oD
soynduod p opead eondiy oyt 108 | 31

ot
o

I SPIY 01 L pInom | "Aoudtos
Joindwos up sppuiB pood pey | 1

@

-03UDfas
Jopndtues 1 547108 1 33 paou 8 Jo
PULY A0S S8 T I Plrom ojdeog

“snonaidsuod
Apusseaidun 1933 SW BW PIIoK
9UR195 Jondiuos Ut oziad B Furiua

‘Buyy 19918 1 0 piRom 90U
somduias ut Pens se papsessl Surdg

jal

o

‘posgajd O BEW PiRom uORTLiN00
SuwwesBord v ut Jsa1; Butsg

€40 [ofeg
o a I n ‘BunureSoud a1 sawoe
Ui SOUSPLUGI-F|08 300 BIARY] | L
“20UBLS
o o a o o Jsnditoo up sspwfl pooSjeBueo | o
n o a o o ‘stuapqosd BurnsiuesBosd
IRIYJIP GI0W APUAY PO | Ui] | ¢
o o a o a “BunsuresBoid
uwmsj ues e aansuwy |y
a o a I o "93U3I0S JaNndLos Uy
310i pIouBADPE Op plroa fams wey | ¢
swaigosd
Q jn} n} a B BunwwiFord smndwos Suidume
N0GE 910093 403 IABY [A[aa0 | T
8 o & o o asuetas sondision ut sofew opued 1 | g
9a18951p 22188
Alfuong | osaBesty | reamdy | sey | ABuong

o

ojaio

“a5udtes sndwos W a7d
T A 01848 A|[eal aq pmom jf

=

“20UL0s JaIndiuos
ut soperff dot 108 of Addey 3g pt

ojo:o

aglao

BRI S2INGWIOD UT JUSPTIS
Rurpuwisino a3 8q 01 povid 83 p |

N "32u8138 rynduood
UL JUBPMS 1US][AX3 UR 58 paziuBooss
aq o1 Addm| ow ez pjnom 3f

100fqns
1530Mm AW 193Q $BY BOUA0S JNNdIE0S

‘sunqa:d SununesSod
dn Suiqqny 03 youuy € A8y T
10 ' SIpUEY LED [S1lns ISP

“Jul 40} pavy
stupes Burarerfoud ‘1 ye paey
204 | YBNOY) USAS LIOSESS BIOS 10§

“Buwwesfod zondwios
ut {jass Op o1 adky gy aou uLy

]

2ouatos sandwoa
PAOUBAPE OP PIRO3 | St LUOP |

S S JO T8 B9gdiio) —

“Renms oy yBnoay A[gomb oaop —

“Apsouoy puodsar o) preye £q),UCP 05 ‘s1amsun Juoam jo i ot em ety —
‘pujw ot dsoy asea(g

ISR BY} (LA WS ITRSIP
10309023288 JUOK $153)301 A[950]0 ISORLILY (2B] AR JAPIN XOQ Sk 1 ILUNISD B AW ¢
“UWATES A Yt aafesip 0 oax88 wek ongw o) 90 Ay aapisuo) 7
WRUAYIS 3 pey |
4401104 1BLR SIURINS 31 IO Yore 10,

{]

U8 uBaq aAME KOS TRy (1)) LoqUiNu UORRIYLUEP S SR
suepanJjsuy

‘JeRuapiuon wdoy
S T{IA S20MSUE INOA JEUI DI0T 98Bl "|rLauof Ur d3ua1ds Jandwios pire Funuresdord sajnduies
Ppagmo; SpmnRE oS onn ySE) UmS 0) FUDWAILIS J0 AL B OF Prodsa) 0f neA syse Asams sy,

Kaang apanny

]

a

‘Bunuurefosd 1 poos ou usj

soufiasty
A fuong

ssafusigl

[BIMeN

aa1fly

sa.fe
Afduong

1400 ‘SIuNY ‘A vpUeA U1d “wolly G Haqoy STOTPRTIANY 5551

sydsono)) BunmwieaBoa | Lrojonpoasug Jo Ruussa Juapmg uo
sstproaddy Bupgana ajeaedsig yo yordwaf 01 jo voeBisdau] uy (3T 139164

147

ATTITUDE SURVEY FOR MAIN STUDY

APPENDIX N

‘¢ oFed ‘Koains opminyy *Z-N 2anS1

£30 gaded

a [w} W] W) a
01 90URAR|33 OU JO §i FuBoly | oy
fu)] o o Is] 91 Ku jnoyBroa) slem
Ay 1 Buy oud 51|] | EC
o =} u} o}) "0 axung Aw o3 Bunvwefosxd
JO A1nSIw uLig 8 paau ‘8¢
I P0fgns AIessaoau
g D 2 b 0 S[IYLALIOM € ST duajos Jaindwo | L g
Bulalj 7 wws
o B a o e sur djey (e Bnowpsford Smmouy | og
In] o I} o) ST [NRER AOL
mouy 1 3snevse Sumnpifiod Sposs | | g¢
M
o G o . o saruy Kw tog Futwweslaad poau 11 | pg
I} o n u] o “1B{Noad 1q § pie asusias amndwod
SinAprs Lofus oym usutop | ¢f
“UBLHOM B UEY) UBHI ¥ AQ PAAOS
a w} =} A s} wa|qosd BururuesBoud B 10y Jemste
QU U It VIOW eaBy POm) | T
“3OUDDS
=} a] =}] 10IndI0D W LALIOM LB USUL
SI0UL 249 DU Ly AU BoNEw 3] | 1€
o a o 0 o ‘aouds aapndiod ui suof 9
aq pJrod S{BILGS B 9AA1[eq O PREY SU | G€
I} o o o) o “33U2155 1ANAWOD 1 {[3ss 0P 0}
yHnous jeorio) ase Auenss vowog | 6z
“swatqoxd SuneBoud werodu
|5} a a a2 [w] 100 3MBLE O} B B 1601 PIROM | s
i U
ot 52 38nf urwom B Jsna plrom] | gz
u) I}) B a “UBWI 30j SR USWIOAL JOJ @
52 15n(51 20u3tos Jomdurnds Buidpnig | Lz
o o a) a ‘Bunwuresod
18 $318UI ST paoR £2 o sajenag | ‘97
onfesip EETRES
ASuong | eaafusiqy | reavaN | %213y | ASuong

148

APPENDIX O: COMPUTER CONCEPTS SURVEY FOR MAIN STUDY

'z pue | safed ‘£aains sydaouoo 1oyndwo) 1-Q 21nd1g

i Jo g ieg O17L0/20 -218C BOISIAA

{EUNY > FWAG > TWNU) §8 PAPOd AY APIWIAE RO 0SS > X » 1 Mo
‘s > % pur ® > T “§9)ucissoadxe origeBe uk 58 swes o Ajjudiseq 8t uoissaxdxz otjf, (p
‘08183 978 suorssaadxa pozrsapuarud ylog 31 osiex Kuo sy voissaxdxa sty (@
NG =< gUENU) ¥O {JEAU =< TWOU) opwemambe spucssoxdwo siy (q
‘05{83 10 AN SJUEsIdaL I ONBA B ST omsaMiNo BL Y (B

o0 0 sARAME 16N KIS BUImoof AU} JO dIYA
(gumu > zumyd} gNY (guny > wou)

(wojssaudxa oY3 YLD (f

11 puw 'y

Ao vza 1

A0 3 pug 1|
Amo s (

=

{4
)

=5

(X 4 X) ¢ @&
RS- S S-S S Y
O 4% x Qe K g N xR A

Lunoy maauef oy (5 Jax Apoasion Buwolpoy st

JO UYL " 3+ XG 1 ¥ = [5§ |RIuOU[od 9arBap-pucoas B go kg _Eosow 2__ ‘sopgusywur U (

@

\ 9 =3
5oL =g (P
g =D
st =49 (3
§ = D
L= q (g
§1 = 2
9 =4 (v

{SPI0DXA OPOD §IT) TOLE D PUE ¢ JO SINBA U} 24U WAL

n

@

q/ ta-z
B

a

QU
¥on
@ &

61 =
L=
ot =

.0 U

SUBWNS o) WKy (7

130 { ofeg Q1ALOCG A 0sIA

GUET ol sappdn X U UG EZ = A STRAWAING XU 31 3T & AjqurEA

Byt caut wang Bunpmeas i sopjd uagy PUe 97 01 0 PPT X SGELEA O JO LA Df3 SAIITY
'0T 01 sa1ppdn £ ualp ‘0T SNN09G BT X JT 5T 81 A UG F1X § "X A[QRLILA 1) Ul

$1 aTljeA JOABINYM PUB (T JO WIS 341 30 srisA s 128 sknmie [pim e A X SJQUHBA AdU B Ajeu)
“ONYBA JBY2 2ABY S8R 1A £ A ofquuna

AUt 01U tuns Framsar sy 20u)d uoys PUs 1 01 G T PPB ‘X SqRIIES BY JO ANYRA ST 2ASNIY {Q

p

2

L SqBlIEA
a1y osut wuns Fugineas ap 5990 noqy pUL 41 01 0T PPY K AqELLA A JO an]es 22 analgRy (B

X e A uowateis 2y yo Buranaw ot s1ieg (1

um:onﬁ: 183G MOA §1980. 5?_ BLE LRI NI oS A
*ATjgaED 883104 JomsuE BulSueduwioasy ag) pus uousanb ay; peay |
SAMO[OF 1B SUOLSIND BT JO YTER 40,

[|

:taar uag ARt nos Jeyl (1) JOqUME GONESYHUAP) U1 Jojug]
suoysInnEUY

‘|BUUApLIOD 3daY OQ [{iM SIBMSUR N0 L "PAOR0 SULIND a1 NOK YILA U 3N
Fusumudord samdwon oy ug ucﬂm “nod U0 JTRGWI OU FABY |[1A H B0 IDUBLLIG 1A MOK 161 pamsse
15y “sidootoa) 30 oBpay; ;10K ssasge 0 st £8a18$ syl Jo ssodnd otjf

Koaang ardamio]y «omduw?)

Td-023 *SPHUDY N ¥PURA (| UV ‘g 19Oy TICTINSATY 19¥0L]

if 7y dup 19044 & po.guy Jo Buyuava g juapmg
uo 5;39::2 Suyoes 1, asaedsigl Jo oudwif oy Jo wogudysaauf uy [133101

149

APPENDIX O: COMPUTER CONCEPTS SURVEY FOR MAIN STUDY

‘b pue ¢ safed ‘Kaains sydaouos 1aindwo)y z-Q 21n31g

b1 30 rofag

Aoiut@,u:wﬁnmc»:mr.uﬁzEu:?S.::S:.BEXmmmuScE.)u:m:_:o»r.mam;ﬂum
[UP SBUA SU3 UsYA Apjdsip Ao {iim , BTGRTTR6R S3BSS O jAIx04, (p
‘PIOY $3|GULIA JUBWT TOIUINEW PUL FUBWT [OXUSTROZIY
AU SONJBA IBYM Jonewt on AB[dSIP [l , "WX9Y Ix3U uTede L3 25e0Td. (O
ESTE 941 Buimol[op
BONIPUOD OT-§T 20y} 5B ARSI I2A0K [IIM | [BTQRTTPAR S308S ON (AXISF, (q
DIQEHBA AUBWT TOXUZNSU Y3 Ul Snfes 9U3 UBL} anjea §iIqaLRA. jusBwlIoALETENRIIR

G\ (1 aRfEA A1) UDya KBjdsip SO Jitw , (2B YHeu uTebe Ax1 ssesid, (@

{300 8¢ SABAE I SIAWIBIS SULAMO[JOf O JO TONE N

[, wrey jreu urebe Axy agesty,

wi@TqerTeaR s3ERS ON | A3I0S,) JLTHR

{4 18TqRITPAR §3285,) BLI4N
NEHI (JUSUTLOIUFXew » JISWToAUITRNION)

19p00 A1 BIALLY

#1160 ¢ o8y OO0 - ¢

Q) > epexb) = uvorirouas (p
< 8prIb) = HOFIIX
=g BpeIb}

[

E (
(001 => apexf) wO (O
2 0

+ ¢

S
<
=
o

{mo1eq tsoys dooy aiaq { o ut o (dit £300.102 prawfeyg apod Yorqm

ama8 aur induy
BPUME i1 dakid-a4 52 2250 dig) liiod f
081 iyt 0 2EPSSOUL 1041 12 SDYSICT
RPN U0 0 OADZ 28D Big] IPININO S{ A2SN BT &G posarus IpvLS Bt {1

Y pAIpUNY a0 0} 0287 5BUBL
942 APISING) Pr{RA 0N §1 eIy OPRIT 5 JUSPNIS B (0313-61 0} Josn ¢ sychuord wenoBye fuimo| (g o4l

9

(&

ELECEES
ElavHEY ¢
BETEZ =

BNIY n

023

anzy =

88TR] =
BETHE =

(50IN3a%a 0PO3 S dOYR CSUCASAT pur Tasucdasa JO SINUA A Atk IR

ary gesuedsar
sucdsal) 10K
3} 8O BETEl
T GNY endy}

SWAWDIS A TIIAID

150

COMPUTER CONCEPTS SURVEY FOR MAIN STUDY

APPENDIX O

‘9 pue ¢ saged ‘Kaains s1doouos ndwo)y ¢-Q 31031y

bi o9 odeg

O01/L0/C0 BT

sa1buTs > i = fUOTITPUOD
£OTDUTS < BURX = ZUCTIIOUGD
SUAX = SIBUWOY w» TUCTIIDUOD (P

gapwoy > £37HUTS = gUCTIFOUCY
sunT < $BTHUTS « ZUOT)Imuoo
YUAX => SIMWOY & [UOTIFIOUOD
grewoy > s2TBUTE = LUCTIIPUOD
837BUTE < BUNT = ZUCTITOUOD
BIDWOY => SUNI « TUOTIIPUCD (g

3

sxawoy > BRTBUTS = pUOTRIPUOC
SITRUATE ¢ SUNT = ZUGTITOUOD
BUNT =» SIBWOY & TUCTITPUCT (8
N
jsuoTdweys SeTiHS PIAON §O0T

£M0]3q umoys Indino oy ednpord 03 apoa sy M9)dwos STusLRLT YOI,

{w ivtaserusyd s3I0 SHTTTIU.)AIIN
NIAML (FUOTIIOUOD) 31 39TH
TTRBERA BACT I.)ALIEK
(guorifeuod) Ji
tEHL (TUOT

:opes oo (dwodt) S USALE)

$39A

&

biJo g ey

01/L0/T0 PIRQ) UCIRA

—
®
>

x
o

EIR
X
&)

&
%
=

— ot
R R R A R
il

% (2

[RTEe

oY Y USAYY (8

151

COMPUTER CONCEPTS SURVEY FOR MAIN STUDY

APPENDIX O

‘g pue £ saged ‘Koains s3doouos randwo) p-Q aan3ig

ARCE RN QU/L0/TQ "3iu(] UOISIOA

*ABATE O1p 3O SpuMOq S BPISING S AR T TS emm..c,ﬂ Avug oys Joquennale yaqy (p
Uy 0} Snjes oy sBy ARJxyIsbazuUT Seure 9yl o y Joquinu jewd[d, (o

“KeLR QU3 JO SPLMOG 3U) SpIsiNG 9t Aeaxyxebajut Aewre oy Jo y quine JuanR(y (g
310 01 onfes oy sB ARIIYTOHIIGT ADUS QY 3O WS Y ouL (8

{SPIIBXR 3P0 9A0GT BY) JAYE AUT §1 FUIMO[[0F BY3 JO IR

[y Reaxyaobolur =

{piAeaayabequt - [TiKexagrefequy 3 [[lAexzyzabejur « [3]}Arazygzebajul

{g1Azazgaabanuy + [TlAeragxehsiut = [{}Azzavambejuy
{r}Aesxyaabsiuy
= [plARzayzebauT

-

14
7 o=
L

e

auatades opas S WIALD (0192) (il BUNIRIS APANNEEI0Y
PORQUNY DI NUAGIAP SILIBYL PUE)] 218 Jo ArLm 1afaqut ur ST ABTIYTRBOUT 0} AUmssY (7]

$1 30 £ 286y

0 R OB

way = Avogdoct

L=l=
We T w {p
T e f o=
T o Tom (a
axy = Apogdoar
U 03 W = { = zepraydocTieul
U0} T = T ow xgpespdooTialne (4
wra = AROFIOOY
w oy [= [= Japespdeoqrauuy
WOl T ow w Feppagdeorionno (¢

vare
Traas
rraa
¥
TS

(M0]ag umeys dino agy asnposd o1 apot 31 jpjduwos spekBes |

E
£

@ o
)

:apod oyldiaoou; o) Haals) (11

‘01 ylnonn | 9Bues sy vt SI0qUIMU O[OYM j SpPRIL (B
Q1 y3noag | 2BuES oY) B sXeqUInY Ppo oy sppe] (3
01 4Snosy § oftues sy) ¢ jo saduinw ayz sppe] (4

‘Sovugapw sdoop i (3

0P UAWARIS MO I S0P Y

mo,mﬁ—/,u
= u

B3POS 343 U,

152

APPENDIX O: COMPUTER CONCEPTS SURVEY FOR MAIN STUDY

‘01 pue ¢ so8ed ‘Kaans s1deouod 1endwoy g-Q g1y

14004 oBeq OT/LOTO 12MQ UOIRE

“pataduios 3581 83U 1230AILOD UM parBpdn oq DROM 2[qBlTA

19} “pa{[BO SUA 3 FBFSIUTSINAUOD UDYM PISIXD APROIY 82XOIUT PALEN J[GULIEA 8 3]
‘mdino &uw Aopdsip ot [jiw uonamy oL (2

“jous e Sunerauo8 41 Aeydsip o idisane ust)) PUR “35SIBIUY OY3 UINGAI |t UoNdUNY SGE (G
JF INIAL LAY} PUB *I6RXSAUT o AUIdRIp [uonowy sqL (2

—~ o

(358297 UTEINAEUCD LONSURY I J10QL AN} 0G EATA[B 1SNMG SIOLISLIS BUIMOI0F 9 JO YOTg A
I6RIBIUTLINCUOT UDTINUNT UNK

1388I87UT ¢, = IFBIASJUL,) BLINR
(182283UT) N@ALEY

%4 3 4 8= 268733CT

sxozpueaed entra 213 3 pur ‘x 'd //
(2 ‘7 ‘diasexdius

suogonny parajchuos 2yl vaarny {9}
\
C(redroutad ‘e3ea ‘W) 1893IBYUISINGWCD
P[RS 9M I GUIS 91 3q PIOM JS2ISTUTHINAWOD 8 SaN|2A Josviumnd otjt i|v
5 ‘redroutad
30 enfea ot aunyo os)2 14 888U I9TndwoD opisul d Jo enjea oy FwBueyy
. *1 J0J A0{BA J[NBJAP B 35T TfIA
BolsUny) "BWTY 40f nfEA ¢ Bumpraord oyim 18028 TDINAWSD LORAMY O 1180 A J1
"BIER JO A[EA YT ST JULY YT 0Q (M I5BTSJUTSINAWOD RIS X O ARYYA TERRI AL

P

o

3
#

e~

$289323UTRINAWOS UONoUN] YL MOYE At 9G SARm R JShuE SRS Fumo[og 70 YoM
{pwyly ‘ezex ‘radiouysd)usersjuraindwos

‘BOBOUNY Y1 {JBI SM SUMSSY

asozpyuzsIndwon uUCTIOUNT (NI

{34BIBIUTY

sxeyouried onrea dxe 3 puw ‘x ‘d J/
{1 “2 ‘dyzsexsquiejnduos

“fonAmy M) IO SUMNG AN UMD (S

51 30 § aing CULO/TO P16 BOBIAN

S[qBLEA 311 JO 37

SINCIXS DPOD ST ST Sl SR
ATIMY ONE
1 + AUROD = TUN0O
[2uncojdexIysarenbs + wAS =
0d {{saTsdRIIR > TUNOD) GNY (ITWTT > Wns}) ITIRG

[00Y ‘10 ‘¢9 ‘6p

10pod F[3 B2ALE) (0192) § 1pias Buruis ARaunodsuon
PRISQUMG 200 SIUAWAIA ST IBE PUT ([3235 Jo ALUB LB} e 5§ ALIXYSSTETDS Jet) SUMSSy (p

*Kesuoput sdeay i {p

‘01 ySnonp 1 afwes oy; w ¢ Jo sapdnmus a1 sppey (2
‘01 ydnoys § aBues oy ui ssguaU Ppo I sppR i (4
*OF YBIOIY | aBuEl oU U3 SISQUIN 3(OYA YT SPPE S (B

(Op s 57

PP A udAL) (€]

153

COMPUTER CONCEPTS SURVEY FOR MAIN STUDY

APPENDIX O

‘z1 pue 11 sofed ‘Kaans s1dasuoo 1ndwoy9-Q amdig

£1 3071980 O1/L0/Z0 210G UOEI2 A

[t
91 (>
[N
g (o

\

412) £A293.94H [[80 uoncung ouf £q PotnIar NjeA 3 51BN

. AT9asfH UOTIOURZ ONY

I1 aNs
(1T + Uy RaoasdW » 2) NNNLRY

{2} RIpL®
HAHL (p = u} ar

rajouered angeA © €F ©

ssapauiessd 1Bt o1Rags B s)dd008 I LOUDLNY 0aYSINORS Buimo|Io; 3y Jopisuc) (07

‘RiPATIIZ) PAATOS 0 OSIB ted A]0AISIN02I PoA0Ss 04 teo 18wl wiajqoad SuraumBord Auy (p
. “worSaTas RSN £3uateiso 310U
T9A0S 3G tES A[DATIBIIN JO £JIAISINGAI I0t1t0 PIAJOS 3q Ues Jey) widjqoid Bupuwesfosd Loy (o
*AJPTUT 000 101 URD 'UONBINT I ‘noismazy {Q
ds dAISMASS
© pue 25k oseq B Sited omi SO §ISISHO3 uilodfe aa1sn0as e sjEomAldwz jeg) vononry v (e

;ong sSem[u StUOISINGAI NOGB SUSWAILIS JULMOTI0T A JO YoM (51

P140 1) #Rag Q1/L0/T0 D HISI

mpun Y (p

‘o tpugy (o

SPAIR JO SIIAUIDLD JSB] PUE “A[PPIAI ‘IS1Y S W KON{RA
SAN[BA 3O JAQUINU LUINLINRU U} 0} SUD (0L} 2104 AUB UIBRIOD JA) SALLry
SON{BA OU LIRILOD JTU) $4BLY

LPIPLSNI §7 SHI0A UOUOUNS ANOA JUL] QINEUL Q) $3809
15911004 151 apA[OUY 0L IBY) PUSULOSDI S19uLTa 310MYOS O BULMOTIO) 13 S0 Y1y tasaumeed
© £ LB e 3548} 10U ROTIoUY B tuatwad(duny puz RBISOP 0} PoNsE USS(2ABY 10K I sUISSY (8]

11 = WORPUOoDS ‘g = §] ey
T w WNEPUORBE ‘g = gouy (p
g = UnNPUODAS ‘I] = g] eug
11 = WONDUODBS ‘g m gany (o
11 = WORPUCORE ‘g = ig 1 oul
g = WHpIPUCTNS ‘T = WNNSS. sau (q
] = WGNPUSUBY 1Y g1 any
8 = wngpucees 1T = goury {e

(A1pan0adsol ‘1 pure g ssul sayoeal
nonnoaxa wezload UM S3IQEIEA WRKDUTORS PUR WDRISI TT) JO SORMA A1 1Y 18I,

T weaboxd gz
{unypuenas UNNIS2 1) abueysIsiuy

T = WNNPUOOS
3 = WNHIFITS

@mﬂszkwdn: ucIIDURT NI
Teaduas = wnNpucles
WONPUODSEE = WONISATE
28377 = Teadwad

szozoweTRd GNiEA SIE WNNDUODSS DUE WANISITI //
(UNNPUODYS SITIrafusycIauy

@HUBYSISIIT uooury St pae Ut wieiBoad o uoary (41

http://fi.rst.Num

154

APPENDIX O: COMPUTER CONCEPTS SURVEY FOR MAIN STUDY

‘p1 pue ¢1 soded ‘Aaains s1daouos 1oindwo)y -0 dang1

b130 pi 0Bkt D1/L0/Z IR UOKIZA £ 30 €1 98eq

Anogup Ao (R
Aoy p unupaw o mo-| (p

Smoyyp urtpojy (2
Amogrp yiiy o1 anpsiy (4

Qmoggip g (v

|
*AMO[3Q UMOYS $AL0FAIRD AU} WIOY NOIOIR 8
Hrppeul A Asang 810201100 I3INdIE0D SUA JO [942] AYNILIIP S JO USRI MOL DRI 93U

(OyaDzeb *, iYdD.) AL16K

() zofepasl ¢, :xolew,) 33TvH
{{)swep3ed ‘, 13judpnlg,)uiiys (P
({}¢gD3eb ebacen *, iYdD.)ILI¥H
::oﬁmﬁwm.mﬁomoGo?z_;mﬁ;
m

]

{{youey3ebrafzonn ', 13UPPNIS,) ALY
(wan3vbrebioss ‘., w49, 3Ll
(zof{eyieb ebices ¢, :izoleq,)IIIun
{aueyyeb obsoen 7/, 13u0PNIE,) 23094
(W49 'y 1YdD.) FLINM

(aofew ¢, 200N,)3LTun

(ewsu ’, 13Uepnig,)FilNe (¢

(e}

14

o

AbBoTotE
gbaoss 1

{aorad maoys o oy aonpoxd a1 150 fjim ouanbas apod
oitgp ‘duef pue B1090) (g uonsenb) JUSPNIS S5BLD JO SIOULISTL OA) DALY A 18N} SUMSEY

DVALORL0 DR HOIGN

s 81 ysiydmoaae o
SPOYIOLE S5E|0 JSYIO D) 350 30U PINOI) I5NEASq YIRI0s Wioy paruowerdwl oy o) pay AzrdsTe (P
I 9yee JBY) 100(go 2uente oyl Jo) Sanfea owmqrnE oy wud (e Az tdste (o
“POIFES €1 Jf oy JEIXD et 530840 JUAPTLE (17 107 sameA amque s jud jum Srpdstp (g
“awmen 3 RordAl 4g Kdions sonjea aingquae wud o) pajeo oq we Avrdein (3

(201 9Q SATAJC JRNIUE SIUDWAIBIS FUIMO({0F 1) JO YOHLAY

(72 wonsenb) JuepnlG SSB(D
) POPPT U3aq SBY SOQUIIE Y O satBA au suLE ey Ae Tds TR poylows sugnd B uy: swnssy (¢7

"SPOIISLL JUSILIP PUR SANGUIE JUABIIP dasy WI2fq0 1osveyoad pus S195040 UBPNIE (p
SANULE §,150[qC JUSPRIE B 558008 109 19540 J0s BB 30T Y (2

'103(g0 T0568J0IS § 303 SWEU JO HNBA S| UBH WIIOYIP 2 sALM[B ISt 1020 3usDRLS
.40} BUIEG JO OTBA OY 'BUTU MNQUNR U ARY YI0q IOES635Id pUm 3USPNI6 0miS (4
‘oweN I POYIO B 0ALY JOULLY JOSS 8] 0xd 'BwINT 05 poqIous b sUY TUARNLS soug (&

;o0 aq SABAE ISTL BMMLSYNS BULAQ([OF DU 10 UDIY 4\

“joalqus pur awrd sanquue orAld [l J0FSeF X
RSR|2 aigsEdas B 9ARY 0a) 1B QUSSR OS|Y “¥dTRa b pus ‘rolEwael ‘aueyd ob spotes

ojand pus a9 puw ToLEi SurEU S2INGLIE HIRALID (M JUSDTTS SSBID 2 OARY M IEY) ANSSY (7T

(sz

rernzes (q

TRTAOLORI UOTAOUNG AN

A% QRS
dals aApsIncer

i

$13
(1) N¥nIsw
NEHL {1 => W) 3%

T9j0upled INTRA B

0108,

Te

(Ao 21891 e 5210(duioo Spd3II0>
JuawiBagg 2p0o Yoy "moiaq svadde TRTIOFDR2 UOHOURY AAISMARS JO uoNBIUAtAKhL) [exued ¢

| et 0] 5!5.: =it o3 jusuambs
st 57 Jers Buia1asqo £g A[palmdaL pUUYAP aG WID RO '] 34 01 PAUIIOP §0 Pue 'T 03 jenba
(74 HEHEN] ,AN l:v .?l& 1 3enpard 2y s1°jte uapts ' toSojur aaurBautou @ 3o feloioey L (17

http://tu.de

155
APPENDIX P: COMPUTER CONCEPTS SURVEY REVIEW FORM

Project Title: An Investigation of the Imapact of Disparate Teachiog Appreaches on Stadent Learning of Introductory
Programming Concepts

Project Investigators: Robert B. Allen, P Wanda M. Kunkle, Co-Pl

Computer Concepts Survey Review Form
The purposc of this form is to obtain expert review of the computer concepts survey tool used in the study named above.

Instructions
Please enter your initials in the box below:

{ i

For each of the questions on the compiter concepls survey:

. Reeord your letter response to the guestion.

2 Decide whether the ion reflects fund prog: pis that stad: shoutd know after completing anintroductory course in
object-on d progs ing. Indicate your resp by placing an X in the appropriate box.

3. Rate the quality of the question using the scale provided. ("Quality” here refers to how well the guestion is written. For example: Is the content
accurate? Is it clear what the question is asking? s theve anything about the psendocode that you find especially confusing?) Indicate your
response by placing an X in the appropriate box.

Question Redlects Question quality This cotomny Is for any optiona)! comments yon wish to
basic make. For example, if you think 2 geestion shonld be
concepts changed, bricfly indicate why and how.
Nuwmwber | Answer { Yes | No | Donot | Use agaia with | Use again with Use Comments (optivaat)
use major changes | minor changes | again as
sapmin is
1.
z
Page | of 3

Figure P-1. Computer concepts survey review form, page 1.

APPENDIX P: COMPUTER CONCEPTS SURVEY REVIEW FORM

156

Question. Reflects Question qnality This eolomn i for any optional comments you wish to
basic make. For exaraple, if you think a goestion should be
CORCEPLS. chauped, bricily indicate why and bow.
Number | Answer | Yes | No | Donot | Useagam with | Use again with Use Comaents {optional)
use major changes | winor changes | againas
again is

3.
4.
5.
6.
7.
8.
9.
10,
135
12
13.
14.
15.

Page 2of3

Figure P-2. Computer concepts survey review form, page 2.

APPENDIX P: COMPUTER CONCEPTS SURVEY REVIEW FORM

157

Question ReDects Question quality “This colum is for any optiona! comments yon wish {o
basic make. For example, it von think a goestion should be
concepls changed, biriefly indicate why and bow.
Number | Answer | Yes | No | Donat | Usesgain with | Use again with Tse Comments {optional)
use major changes | miner changes | againas
again is
16.
17.
18.
192
20.
21.
22
23,
24,
25, nfa | nfa
Ad about the tonol you wish to add (opticnal):
Page 3of3

Figure P-3. Computer concepts survey review form, page 3.

158

VITA
WANDA M. KUNKLE
EDUCATION: Master of Science in Computer Science
West Chester University, West Chester, PA
May 1995
Master of Music in Piano Pedagogy
West Chester University, West Chester, PA
December 1989
Thesis:
An Analysis and Pedagogical Discussion of Selected Piano
Pieces for the Left Hand Alone
Bachelor of Music in Music Education/Mathematics (Secondary Education)
Marywood University, Magna Cum Laude, Scranton, PA
May 1979
COLLEGE TEACHING
EXPERIENCE: COMPUTER SCIENCE INSTRUCTOR
Department of Computer Science, Rowan University, Glassboro, NJ -
September 1996 to the present
Teach Compiler Design, Programming Languages, Data Structures & Algorithms,
Java for Object-Oriented Programmers, Computer Science & Programming,
Introduction to Programming, Computer Organization, Computing
Environments, Computer Literacy.
MATHEMATICS INSTRUCTOR
Department of Mathematics, Drexel University, Philadelphia, PA —
September 2000 to the present
Teach Introduction to Analysis I & II, Discrete Mathematics, Pre-Calculus.
PRESENTATIONS: “A Web-Based Integral Evaluator: A Demonstration of the Successful
Integration of WebEQ, Maple, and Java”
Poster/demonstration presented at the MathML International Conference
2002: MathML and Technologies for Math on the Web, June 2002
HONORS: Member of: Kappa Delta Pi (National Honor Society in Education),
Delta Epsilon Sigma (National Catholic Scholastic Honor Society),
Kappa Mu Epsiton (National Mathematics Honor Society),
Upsilon Pi Epsilon (International Honor Society in the Computing and
Information Disciplines),
Montclair Who’s Who in Collegiate Faculty (2006-2007)
PROFESSIONAL
AFFILIATIONS: Member of: ACM,

ACM Special Interest Group on Computer Science Education (SIGCSE),
ACM Special Interest Group on Computer-Human Interaction (SIGCHI),
Computer Science Teachers Association (CSTA),

IEEE Computer Society

