
www.manaraa.com

The Impact of Different Teaching Approaches and Languages on

Student Learning of Introductory Programming Concepts

A Thesis

Submitted to the Faculty

of

Drexel University

by

Wanda M. Kunkle

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy

September 2010

www.manaraa.com

UMI Number: 3430595

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMI 3430595
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

www.manaraa.com

Drexel
milH'JJMU'J

Office of Graduate Studies
Dissertation/Thesis Approval Form

This form is for use by all doctoral and master's students with a dissertation/thesis requirement.
Please print clearly as the library will bind a copy of this form with each copy of the
dissertation/thesis. All doctoral dissertations must conform to university format requirements,
which is the responsibility of the student and supervising professor. Students should obtain a copy
of the Thesis Manual located on the library website.

Dissertation/Thesis Title:

^

Author:

<uA*U~f Jl

This dissertation/thesis is hereby accepted and approved.

Signatures:

Examining Committee

Chair

Members

Academic Advisor

Department Head

(Ir^j^.

C/^K'J-^J C. At*j**J\

"k^~fr
AAM-^~-^ 'l\lyjJUJ^fz.

Office of Graduate Studies • 3141 Chestnut Streci • Randdl Hall 240 • Philadelphia, PA 19104
Tel: 215-895-0366 • Fai: 215-895-0495 • Email: giadualc@drcxel.edu • Web: www.drcxcl.edu/pTOvost/graduBtcsniilin

mailto:giadualc@drcxel.edu
http://www.drcxcl.edu/pTOvost/graduBtcsniilin

www.manaraa.com

Copyright 2010
Wanda M. Kunkle. All Rights Reserved.

www.manaraa.com

ii

DEDICATIONS

I dedicate this dissertation to the memory of

Nathan J. Kunkle

the loving father who encouraged me to become the person I was meant to be

and

the highly respected educator who inspired me to follow in his footsteps.

Nathan J. Kunkle (1907 - 1965)

www.manaraa.com

iii

ACKNOWLEDGEMENTS

I wish to thank my advisor, Robert Allen, and the members of my dissertation

committee for their support and guidance in doing the research and writing required to

complete this work.

I also wish to thank the Computer Science instructors who helped me recruit the

students who participated in my research study, as well as the students themselves.

Without the students, there would have been no study.

I especially wish to thank the friends and family who encouraged me to keep

going when I began to falter because I was feeling overwhelmed by the amount of time

and effort I needed to put in to complete this dissertation. Some of those friends are on

my dissertation committee, so they are getting thanked twice.

Finally, a special thanks goes out to my cousin, Durand Kunkle, who regularly

called to ask how I was progressing with my dissertation. He has been planning the

celebration for some time now.

www.manaraa.com

iv

TABLE OF CONTENTS

LIST OF FIGURES ix

ABSTRACT xiii

CHAPTER ^INTRODUCTION 1

1.1 Problem Statement 1

1.2 Novice Teaching Approaches in Practice 2

1.3 Contribution to Computer Science Education Research 5

CHAPTER 2:APPROACHES FOR TEACHING OBJECT-ORIENTED

PROGRAMMING 6

2.1 Brief Descriptions 6

2.2 Detailed Descriptions 7

2.2.1 Objects-First Approach Using Blue] 7

2.2.2 Objects-First or Objects-Early Approach Using Alice 9

2.2.3 Imperative-First Approach Using Python 12

2.3 Distinctive Features 14

CHAPTER 3:REVIEW OF NOVICE PROGRAMMER LITERATURE 16

3.1 Programming Language Knowledge 16

3.1.1 Procedural and Functional Languages 16

3.1.2 Object-Oriented Languages 17

3.2 Programming Misconceptions 18

3.3 Scaffolding for Learning Object-Oriented Programming 20

3.3.1 Definition of Scaffolding 20

3.3.2 Key Features of Scaffolding 21

www.manaraa.com

V

3.3.3 Scaffolding to Support Learning to Program 21

3.4 Theories of Learning to Program 22

3.4.1 Constructivism 22

3.4.2 Assimilation Encoding Theory 24

3.4.3 Advance Organizers 25

3.5 Model of Object-Oriented Programming 26

3.6 Transfer in Computing Environments 26

3.6.1 Definition of Transfer 26

3.6.2 Theories of Transfer 26

3.6.3 New Learning as Transfer from Previous Learning 27

3.6.4 Transfer Between Programming Languages and Text Editors 28

CHAPTER 4:EDUCATIONAL ASSESSMENT 29

4.1 Assessment in Computing 29

4.2 Principles of Assessment 30

4.3 Approaches to Assessment 30

4.4 Existing Tools 31

4.4.1 Mathematics, Science, and Engineering 31

4.4.2 Computing 32

4.5 A Tool for Introductory Computing 33

4.5.1 Rationale 33

4.5.2 Characteristics of the Tool 34

4.5.3 Tool Development 41

4.5.4 Reliability and Validity of the Tool 42

www.manaraa.com

vi

CHAPTER 5:PILOT STUDY 46

5.1 Purpose 46

5.2 Participants 46

5.3 Task 46

5.4 Results 47

5.5 Analysis 49

CHAPTER 6: RESEARCH QUESTIONS AND HYPOTHESES 51

6.1 Research Questions 51

6.2 Related Hypotheses 52

CHAPTER 7:EXPERIMENTAL STUDY DESIGN 53

7.1 Purpose of Study 53

7.2 Description of Methodology (General) 53

7.2.1 Time Dimension 53

7.2.2 Units of Analysis 53

7.2.3 Units of Observation (Participants) 53

7.2.4 Constructs 54

7.2.5 Terms or Components 54

7.2.6 Level of Measurement 55

7.3 Description of Methodology (Detailed) 55

7.3.1 Description 55

7.3.2 Research Questions 55

7.3.3 Related Hypotheses 56

7.3.4 Methodology 56

www.manaraa.com

vii

7.3.5 Data Analysis 57

CHAPTER 8:MAIN STUDY DESCRIPTION AND RESULTS 58

8.1 Purpose 58

8.2 Participants 58

8.3 Task 60

8.4 Results 60

8.5 Assessment Tool 61

8.5.1 Scoring Procedure 61

8.5.2 Item Response Pattern Analysis 61

8.5.3 Item Discrimination Analysis 67

8.6 Student Performance 82

8.6.1 Score Distribution Analysis 82

8.6.2 Mean Scores Analysis by Language Group 83

8.6.3 Topic Area Analysis by Language Group 88

8.6.4 Code-Completion Analysis by Language Group 94

CHAPTER 9:DISCUSSION 96

9.1 Importance of Computer Science Education Research 96

9.2 Assessment Instrument Performance 97

9.3 Student Performance 100

9.4 Implications for Computer Science Education 105

9.5 Future Work 106

www.manaraa.com

viii

LIST OF REFERENCES 109

APPENDIX A: DEMOGRAPHIC SURVEY DATA FOR PILOT STUDY 123

APPENDIX B: PRE-TEST RESULTS FOR PILOT STUDY 124

APPENDIX C: POST-TEST RESULTS FOR PILOT STUDY 125

APPENDIX D: PRETEST QUESTION RESPONSES BY QUARTILE FOR
MAIN STUDY 126

APPENDIX E: POST-TEST QUESTION RESPONSES BY QUARTILE FOR
MAIN STUDY 127

APPENDIX F: ITEM DISCRIMINATION ANALYSIS FOR PRETEST FOR
MAIN STUDY 128

APPENDIX G: ITEM DISCRIMINATION ANALYSIS FOR POST-TEST FOR
MAIN STUDY 130

APPENDIX H: CORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR PRETEST FOR MAIN STUDY 132

APPENDIX I: CORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR POST-TEST FOR MAIN STUDY 134

APPENDIX J: INCORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR PRE-TEST FOR MAIN STUDY 136

APPENDIX K: INCORRECT RESPONSE PERCENTAGES BY LANGUAGE

GROUP FOR POST-TEST FOR MAIN STUDY 139

APPENDIX L: DEMOGRAPHIC SURVEY DATA FOR MAIN STUDY 142

APPENDIX MrDEMOGRAPHIC SURVEY FOR MAIN STUDY 145

APPENDIX N: ATTITUDE SURVEY FOR MAIN STUDY 146

APPENDIX O: COMPUTER CONCEPTS SURVEY FOR MAIN STUDY 148

APPENDIX P: COMPUTER CONCEPTS SURVEY REVIEW FORM 155

VITA 158

www.manaraa.com

ix

LIST OF FIGURES

Figure 2-1. An example BlueJ project: people 8

Figure 2-2. An example BlueJ class template: Administration 9

Figure 2-3. An example Alice 2.0 world: First Encounter 11

Figure 2-4. An example Alice 2.0 world: First Encounter 11

Figure 2-5. Source code for part of a Python program that calculates compound

interest 13

Figure 2-6. GUI for a Python program that calculates compound interest 14

Figure 3-1. Model of Assimilation Encoding Theory (Mayer, 1979) 25

Figure 4-1. Pseudocode for Euclidean Algorithm (Gersting, 2007) 40

Figure 4-2. Pseudocode for BinarySearch Algorithm (Gersting, 2007) 40

Figure 5-1. Mean pre-test (session one), post-test (session two), and percent change
scores for pilot study (categorization scheme one) 48

Figure 5-2. Mean pre-test (session one), post-test (session two), and percent change
scores for pilot study (categorization scheme two) 49

Figure 8-1. Proportion of students who chose each question response for session one
(pre-test) 62

Figure 8-2. Proportion of students who chose each question response for session two
(post-test) 63

Figure 8-3. Proportion of session two students who chose each response for questions
5, 9, 19, 20, and 23, divided into four groups by score (high to low) 64

Figure 8-4. Session one (pre-test) and session two (post-test) item discrimination
analysis for questions 1 through 11 70

Figure 8-5. Session one (pre-test) and session two (post-test) item discrimination
analysis for questions 13 through 16, 18, and 20 through 24 72

www.manaraa.com

X

Figure 8-6. Session one (pre-test) and session two (post-test) item discrimination
analysis for questions 12, 17, and 19 73

Figure 8-7. Session one (pre-test) reliability, average score, standard deviation, and
standard error of measurement statistics for questions 1 through 24.
Reliability is calculated using K-R21 75

Figure 8-8. Session two (post-test) reliability, average score, standard deviation, and
standard error of measurement statistics for questions 1 through 24 (left);
and questions 1 through 24, minus questions 12 and 19 (right).
Reliability is calculated using K-R21 75

Figure 8-9. Cronbach's alpha values for session one (pre-test) and session two
(post-test) 77

Figure 8-10. Factors representing the construct "understanding of fundamental
programming concepts," extracted through principal component
analysis 81

Figure 8-11.Session one (pre-test) and session two (post-test) scores for the 61
students who completed both parts of the study 82

Figure 8-12.Mean scores for session one (pre-test) and session two (post-test) by
language group where: Java N = 13, Visual Basic N = 22, C++ N = 26,
Total N = 61 84

Figure 8-13.Mean "basics" scores for pre-test and post-test by language group
where: Java N = 13, Visual Basic N = 22, C++ N = 26, Total N = 61 89

Figure 8-14.Mean "logical expressions" scores for pre-test and post-test by language
group where: Java N = 13, Visual Basic N = 22, C++ N = 26,
Total N = 61 89

Figure 8-15.Mean "classes and objects" scores for pre-test and post-test by language
group where: Java N = 13, Visual Basic N = 22, C++ N = 26,
Total N = 61 92

Figure 8-16.Mean "code-completion" scores for pre-test and post-test by language
group where: Java N = 13, Visual Basic N = 22, C++ N = 26,
Total N = 61 94

Figure A-l . Demographic survey data for pilot study 123

Figure B-l. Pre-test results for pilot study 124

Figure C-l. Post-test results for pilot study 125

www.manaraa.com

xi

Figure D-l. Proportion of pre-test students who chose each response for questions 1
through 12, divided into quartiles by score (high to low) 126

Figure D-2. Proportion of pre-test students who chose each response for questions 13
through 24, divided into quartiles by score (high to low) 126

Figure E-l. Proportion of post-test students who chose each response for questions 1
through 12, divided into quartiles by score (high to low) 127

Figure E-2. Proportion of pos-test students who chose each response for questions 13

through 24, divided into quartiles by score (high to low) 127

Figure F-l. Pre-test item discrimination analysis for questions 1 through 12 128

Figure F-2. Pre-test item discrimination analysis for questions 13 through 24 128

Figure F-3. Reliability, average score, standard deviation, and standard error of

measurement statistics for pre-test 129

Figure G-l. Post-test item discrimination analysis for questions 1 through 12 130

Figure G-2. Post-test item discrimination analysis for questions 13 through 24 130

Figure G-3. Reliability, average score, standard deviation, and standard error of

measurement statistics for post-test 131

Figure H-l. Correct response percentages for questions 1 through 8 of pre-test 132

Figure H-2. Correct response percentages for questions 9 through 16 of pre-test 132

Figure H-3. Correct response percentages for questions 17 through 24 of pre-test 133

Figure 1-1. Correct response percentages for questions 1 through 8 of post-test 134

Figure 1-2. Correct response percentages for questions 9 through 16 of post-test 134

Figure 1-3. Correct response percentages for questions 17 through 24 of post-test 135

Figure J-l. Incorrect response percentages for questions 1 through 8 of pre-test
where: Java N = 13, Visual Basic N = 22, C++ N = 26, Total N = 61 136

Figure 3-2. Incorrect response percentages for questions 9 through 16 of pre-test
where: Java N = 13, Visual Basic N = 22, C++ N = 26, Total N = 61 137

Figure J-3. Incorrect response percentages for questions 17 through 24 of pre-test
where: Java N = 13, Visual Basic N = 22, C++ N = 26, Total N = 61 138

www.manaraa.com

xii

Figure K-l. Incorrect response percentages for questions 1 through 8 of post-test
where: JavaN = 13, Visual Basic N = 22, C++ N = 26, Total N = 61 139

Figure K-2. Incorrect response percentages for questions 9 through 16 of post-test
where: Java N = 13, Visual Basic N = 22, C++ N = 26, Total N = 61 140

Figure K-3. Incorrect response percentages for questions 17 through 24 of post-test
where: Java N = 13, Visual Basic N = 22, C++ N = 26, Total N = 61 141

Figure L-l. Demographic information for the 14 Java students; the highlighted records
represent students who only completed the first part of the study 142

Figure L-2. Demographic information for the 29 Visual Basic students; the high­
lighted records represent students who only completed the first part of
the study 143

Figure L-3. Demographic information for the 26 C++ students; all of the C++

students completed both parts of the study 144

Figure M-l. Demographic survey, pages 1 and 2 145

Figure N-l. Attitude survey, pages 1 and 2 146

Figure N-2. Attitude survey, page 3 147

Figure O-l. Computer concepts survey, pages 1 and 2 148

Figure 0-2. Computer concepts survey, pages 3 and 4 149

Figure 0-3. Computer concepts survey, pages 5 and 6 150

Figure 0-4. Computer concepts survey, pages 7 and 8 151

Figure 0-5 . Computer concepts survey, pages 9 and 10 152

Figure 0-6. Computer concepts survey, pages 11 and 12 153

Figure 0-7. Computer concepts survey, pages 13 and 14 154

Figure P-l. Computer concepts survey review form, page 1 155

Figure P-2. Computer concepts survey review form, page 2 156

Figure P-3. Computer concepts survey review form, page 3 157

www.manaraa.com

Xlll

Abstract

The Impact of Different Teaching Approaches and Languages on
Student Learning of Introductory Programming Concepts

Wanda M. Kunkle
Robert B. Allen, Ph.D. Supervisor

Many students experience difficulties learning to program. They find learning to

program in the object-oriented paradigm particularly challenging. As a result, computing

educators have tried a variety of instructional methods to assist beginning programmers.

These include developing approaches geared specifically toward novices and

experimenting with different introductory programming languages. However, having

tried these different methods, computing educators are faced with yet another dilemma:

how to tell if any of these interventions actually worked?

The research presented here was motivated by an interest in improving practices

in computer science education in general and improving my own practices as a computer

science educator in particular. Its purpose was to develop an instrument to assess student

learning of fundamental and object-oriented programming concepts, and to use that

instrument to investigate the impact of different teaching approaches and languages on

students' ability to learn those concepts.

Students enrolled in programming courses at two different universities in the Mid-

Atlantic region during the 2009-2010 academic year participated in the study. Extensive

data analysis showed that the assessment instrument performed well overall. Reliability

estimates ranged from 0.65 to 0.79. The instrument is intrinsically valid since the

questions are based on the core concepts of the Programming Fundamentals knowledge

www.manaraa.com

xiv

area defined by the 2008 ACM/IEEE curricular guidelines. Support for content validity

includes: 71% of correct responses varied directly with the students' scores; all possible

responses were selected at least once; and 21 out of 24 questions discriminated well

between high and low scoring students. CS faculty reviewers indicated that 19 out of 24

questions reflected basic concepts and should be used again "as is" or with "minor

changes." Factor analysis extracted three comprehensible components, "methods and

functions," "mathematical and logical expressions," and "control structures," suggesting

the instrument is on its way to effectively representing the construct "understanding of

fundamental programming concepts."

Statistical analysis revealed significant differences in student performance based

on language of instruction. Analyses revealed differences with respect to overall score

and questions involving assignment, mathematical and logical expressions, and code-

completion. Language of instruction did not appear to affect student performance on

questions addressing object-oriented concepts.

www.manaraa.com

1

CHAPTER 1: INTRODUCTION

1.1 Problem Statement

Learning to program is a difficult undertaking for many students. Of the

programming language paradigms currently taught, the object-oriented paradigm is

especially hard for beginning programmers to grasp. Object-oriented languages such as

Java and C++ require that students think abstractly to create software objects that model

real-world objects. Personal experience teaching object-oriented programming

(specifically, C++ and Java) has taught me that this type of thinking does not come easily

to most students. Students struggling to master difficult object-oriented concepts become

frustrated, losing confidence in their ability to program.

In an effort to help students learn to program in the object-oriented paradigm,

computing educators have developed teaching approaches geared specifically toward

novices. These approaches range from high-level approaches that focus on creating and

manipulating classes and objects to low-level approaches that focus on writing source

code. Because of their novelty, these approaches are often accompanied by programming

environments designed specifically to support them (Kelleher and Pausch, 2005).

Discussions of these innovative approaches will therefore include descriptions of their

supporting environments.

In addition to developing novel teaching approaches, computing educators have

experimented with using different programming languages to facilitate the process of

learning to program. Languages that have been used to introduce students to

programming include Basic, Visual Basic, Pascal, C++, Java, Python, Scheme, and many

www.manaraa.com

2

others. Unfortunately, some of these languages come with development environments

that present students with yet another obstacle to overcome. Students learning to

program in Visual Basic, for example, must use Microsoft Visual Studio (Microsoft

Visual Studio, 2010). Visual Studio is a professional programming environment

equipped with a plethora of features that novice programmers often find overwhelming.

Having tried different teaching approaches and programming languages to

alleviate the beginning programming experience, computing educators are faced with yet

another dilemma: how to tell if any of these interventions actually worked!

Unfortunately, as Goldman, et al. (2008) point out, "there remains a notable lack of

rigorous assessment tools in computing." Consequently, there is presently no objective

way to accurately determine the impact of diverse teaching approaches and languages on

student learning of introductory programming concepts.

The purpose of this research was thus twofold:

• To develop an instrument to assess student learning of fundamental programming

concepts and specific object-oriented programming concepts.

• To use the instrument developed to investigate the impact of different teaching

approaches and programming languages on students' ability to learn the above

concepts.

1.2 Novice Teaching Approaches in Practice

It seems reasonable to suppose that a teaching approach that emphasizes the

mastery of high-level concepts may very well hinder the mastery of low-level concepts,

and vice-versa. For example, researchers at Monash University, Melbourne, Australia,

and the Masrsk Institute at the University of Southern Denmark advocate an "objects-

www.manaraa.com

first" approach to teaching object-oriented programming. The BlueJ environment they

developed to support their approach therefore emphasizes interacting with static

visualizations of classes and objects to facilitate the learning of object-oriented concepts

(Barnes and Kolling, 2005; BlueJ, 2005; Kolling, Quig, Patterson, and Rosenberg, 2003).

Ragonis and Ben-Ari (2005b) used BlueJ to investigate the learning of object-oriented

programming by high school students over the course of an academic year. They found

that while BlueJ helped students understand object-oriented programming concepts, it did

not help them understand the overall execution (or "flow") of a program. These findings

suggest that the students were unable to trace the program's source code, an ability

required to understand its execution. I noted a similar phenomenon in the Java for

Object-Oriented Programmers course I took over when a colleague became ill.

Specifically, a student who learned to program in Java using BlueJ did not realize that in

order to create an application he could run and test, all he had to do was implement a

"main" method for a new or pre-existing class. Similarly, another student in the same

course (who also learned Java programming using BlueJ) did not seem to understand that

a complete (i.e., executable) Java program requires a "main" method. He thought it was

sufficient to be able to instantiate an object of a class, then right-click on the graphical

representation of the object that BlueJ creates to select and run its various methods.

The authors of Learning to Program with Alice (Dann, Cooper, and Pausch, 2006)

support either an "objects-first" or an "objects-early" approach to teaching object-

oriented programming. Alice (Alice v3.0, 2010) is a three-dimensional (3-D) graphics

programming environment designed to enhance students' initial experience with learning

to program by enabling them to build virtual worlds without having to write source code.

www.manaraa.com

4

Unlike the BlueJ environment, Alice preceded its accompanying teaching approach.

Users of Alice report experiences similar to those reported by users of BlueJ. Powers,

Ecott, and Hirshfield (2007) first used Alice to teach their CSO (introductory)

programming course in the Fall 2005 semester. They followed the approach of Learning

to Program with Alice (Dann, Cooper, and Pausch, 2006) and postponed introducing

programmer-defined variables until late in the Alice portion of the course. They found

that this approach initially contributed to student understanding of loops, conditionals,

and events. Once variables were introduced, however, the difficulties students generally

encounter with these constructs resurfaced.

Clancy (2004) reports a similar experience with a course in which Karel the

Robot (Pattis, 1981) was used to acquaint college students with introductory

programming concepts before moving to the Pascal language. Karel The Robot is a robot

simulator that introduces students to programming using a language similar to Pascal,

except for the absence of variables. One term, a colleague of Clancy's spent more time

than was typically spent on Karel before transitioning to Pascal. His students exhibited

better than usual comprehension of control flow and procedural decomposition. Once his

students moved to Pascal, however, they experienced difficulty with procedures that

involved parameter passing because they did not understand the concept of a variable.

When object-oriented programming first appeared in the computer science

curriculum, it was taught using what might be described as an "objects-late" or an

"imperative-first" approach (Joint Task Force, 2001). Courses that introduced students to

object-oriented programming began by teaching them fundamental procedural

programming concepts such as variables, assignment, conditionals, loops, and

www.manaraa.com

5

procedures/functions early in the course, followed by classes and objects later in the

course. Personal experience has taught me that this approach did not work particularly

well. Students struggled to grasp the concept of abstract objects modeling real-world

objects, as well as to master the syntax of the code required to create those objects.

1.3 Contribution to Computer Science Education Research

Computer science educators have been motivated by both the complexity of

object-oriented languages and the complexity of professional tools for programming in

them to develop approaches and environments specifically to help students learn object-

oriented programming. Unfortunately, too little is known about why students find

learning to program so hard. In order to help them resolve their difficulties, more

research needs to be done in pinpointing the source of those difficulties. It is hoped that

by studying the impact of different teaching approaches on student learning of

introductory programming concepts and by building a tool to assess that learning the

research conducted here will have made a meaningful contribution to the body of

computer science education research. According to the Computing Research Association

(CRA), enrollment in American computer science programs during the 2007-2008

academic year increased for the first time in six years (Zweben, 2009). It should go

without saying that any efforts to continue that trend will be welcomed by the computer

science community.

www.manaraa.com

6

CHAPTER 2: APPROACHES FOR TEACHING OBJECT-ORIENTED
PROGRAMMING

2.1 Brief Descriptions

Numerous approaches for teaching introductory object-oriented (OO)

programming currently exist. Three examples should suffice to demonstrate a diversity

of approaches. Two focus on creating and manipulating classes and objects, while the

third focuses on writing source code. The first represents an "objects-first" approach

supported by the BlueJ environment. BlueJ is an easy-to-use integrated development

environment (IDE) that allows beginning Java programmers to visualize and interact with

classes and objects before ever seeing or writing a line of code (Barnes and Kolling,

2005; BlueJ, 2005; Kolling, Quig, Patterson, and Rosenberg, 2003). The second

represents either an "objects-first" or an "objects-early" approach supported by the Alice

environment. Alice is a three-dimensional (3-D) graphics programming environment that

enables students to build virtual worlds by dragging and dropping objects, methods, and

control structures into a suitable editor (Alice v3.0, 2010; Dann, Cooper, and Pausch,

2006). The third represents a more traditional "programming-first" or "imperative-first"

approach using Python. Python is an object-oriented scripting language that is being used

increasingly to teach introductory programming because of its simple and flexible syntax

and support for immediate feedback (Grandell, Peltomaki, Back, and Salakoski, 2006;

Python, 2007).

www.manaraa.com

7

2.2 Detailed Descriptions

2.2.7 Objects-First Approach Using Blue J

The "objects-first" approach advocates introducing students to concepts such as

classes, objects, methods, and parameters at the very beginning of a course in object-

oriented programming. It encourages students to interact with objects and their methods

before acquainting them with the code that created them.

BlueJ (2005) is an integrated development environment designed specifically for

teaching and learning introductory object-oriented programming in Java. It is basically a

front end developed to run on top of Sun Microsystems' Java 2 Standard Edition (J2SE)

Development Kit (Java Platform, Standard Edition (J2SE), 2005) to provide an

environment that addresses three key shortcomings identified by its developers of

existing programming environments for object-oriented teaching (Kolling, Quig,

Patterson, and Rosenberg, 2003).

These shortcomings are:

• The environment does not reflect the object-oriented paradigm.

• The environment has been designed for professionals and is too complex for novices.

• The environment focuses on building graphical user interfaces (GUIs).

BlueJ seeks to overcome these shortcomings by providing beginning programming

students with an easy-to-use environment that allows them to visualize and interact

directly with classes and objects. Visualization is supported through UML-like diagrams.

Interaction is supported through dialogue boxes and popup menus. Templates support

code generation. Finally, BlueJ intentionally shields students from some of the more

advanced concepts of the Java language (for example, the "main" method with its

www.manaraa.com

required signature "public static void main(String[] args)") until the instructor is ready to

introduce them. A snapshot of BlueJ after opening the project people, one of the example

projects that comes with the standard BlueJ distribution, is shown in Figure 2-1.

-*£ BlueJ: people • O H
Project Edit Tools View Help

New. Class..

—>

Compile

WJWW.'.O.ilWHi

Database

L >

/

<«abstract»
Person

;
Staff

3 [
\

\
Student

Initialising virtual machine... Done

Figure 2-1. An example BlueJ project: people.

www.manaraa.com

Figure 2-2 shows a template for an Administration class, not yet implemented.

*T- Administration

Class Edit Tools Options

| Compile11 Undo [|cul[| Copy 11 Paste [JFind-.] [Find Next| | Close | Implementation

k*
* Write a description of class Administration here.
*
* @ author (your name)

* @ver3ion (a version number or a date)

V
public class Administration

{

private int x;

Constructor for objects of class Administration

*/
public Administration!)

{

x = 0;

}

/**
* An example of a method - replace this comment with your own
*
* Gparaia y a sample parameter for a method

* Greturn the sum of x and y

*/
public int sampleHethodfint y)

return x + y;

changed

Figure 2-2. An example BlueJ class template: Administration.

2.2.2 Objects-First or Objects-Early Approach Using Alice

The "objects-first" and the "objects-early" approaches differ only in the amount

of time that elapses before students are introduced to actual programming language code.

The wait is slightly longer for "objects-first" than it is for "objects-early."

Alice (Alice v3.0, 2010) is a three-dimensional (3-D) graphics programming

environment for building virtual worlds. Originally designed for undergraduate students

www.manaraa.com

10

with no 3-D graphics or programming experience, the focus of the Alice project has

expanded to include middle school and high school students. The goal of the Alice

project is to enhance students' initial experience with learning to program in two ways:

• Remove needless frustration.

• Provide an environment in which novice programmers of both genders can create

compelling programs.

Needless frustration is minimized by allowing students to create programs without

ever typing a line of code, thereby preventing syntax errors. Programs, or worlds, as they

are called in Alice, are constructed primarily by dragging and dropping objects, their

associated methods, and standard control structures into the appropriate editor. An

environment for creating simple, yet exciting programs is provided by using

"storyboarding" as a metaphor for designing computer programs that take the form of 3-

D movies and games. Students can test their programs at any point in the design process

by simply pressing the Play button on the Alice tool bar.

Figure 2-3 shows an example Alice world, First Encounter. A snapshot of the

world as it plays appears in Figure 2-4 (Dann, Cooper, and Pausch, 2006).

www.manaraa.com

11

G Alice {2.0O4TO5/2005) - C:\Documents and Settings\WMK\Des1rtop\Drexei 2Q05-2006\Independent Study - AtlenXFinal...

File Edit Tools Help

QjPfcy OjUndo >>1 '.-
: v......

El

^| j£ Camera

Q jL i i j h t

[?) ground

J rock

! ^ r o c k 2

•> £ ^ alienOnWheels;

[4\ f ^ lunarlanrier

Events create new event

; When the world starts, do ;KWorld.my first method

spider Robot's details

[properties [methods ffencftons [

create new method

spiderRobot move

spiderRobot turn

spiderRobot roll

spiderRobot resize

71 i»

f O World.my first method -

Wo rid. my first method No parameters

No variables

create new parameter

create new variable

id Do in order

n spiderRuhot encounters an alien on a distant moon

. alienOnWheels move up 1 meter more...

alienOnWheels say Slithytoves? more...

l i t
Do in order ii; Do together ;!; If/Else ;i;l_oop ;; While Tor all in order ;>For all together ;>Wait

% print ;•;//

Figure 2-3. An example Alice 2.0 world: First Encounter.

Figure 2-4. An example Alice 2.0 world: First Encounter.

file://C:/Documents

www.manaraa.com

12

2.2.3 Imperative-First Approach Using Python

The "imperative-first" approach begins by teaching students procedural

programming techniques to learn about the imperative aspects of an object-oriented

language, followed by object-oriented techniques to learn about its object-oriented

qualities. Imperative aspects include expressions, control structures, procedures, and

functions. Object-oriented qualities include classes, objects, methods, and inheritance.

Python (2007) is an object-oriented scripting language that is being used

increasingly to teach introductory programming. (JavaScript is another, but it must be

embedded in a host environment such as a Web page to use it (JavaScript, 2007).)

Features that make the language particularly suitable for beginning programmers include:

• Simple syntax.

• Enforced program structure.

• Dynamic typing of variables.

• Powerful built-in types, such as lists.

• Easy-to-use graphics libraries.

• Interactive mode for experimenting with code.

The source code for a Python program that calculates compound interest is shown in

Figure 2-5. Figure 2-6 displays the corresponding GUI (Agarwal and Agarwal, 2005).

www.manaraa.com

13

File Edit Format Run Options Windows. Help

#The Tk interface allows you to set up a GUI.
ixoa Tkinter ia&port *

jSThis is executed when the left button of the mouse ("Button-1") is pressed.
de t getValue(event):

stringValuel=textl.get()
Principal= float(stringValuel)

stringValue2=text2.get()
Rate =float(stringValue2)

stringValue3=text3.get()
NumYears=float(stringValue3)

Amount=Principal * (1 + Rate) **" NumYears

label4 = Label (smallTJindow, text="The compounded value is: $ " + "% . 2f" fc Amount J
labe!4.pack()

#Set up a new window called smallTJindow with the title
^''Compound Interest" of size 200 by 200 pixels.
smallTJindow=Tk ()
smallTJindow. title ("Compound Interest")
smallTJindow. geometry ("200x200")

^Display a label followed by a box for each data entry.
labell=Label (smallTJindow, text="Enter Principal: ")
labell.packO

textl=Entry()
textl.pack()

label2=Label (smallTJindow, text="Enter Rate (realj : ")

label2.pack(>

text2=Entry()

text2.pack()

label3 = Label (smallTJindow, text=" Enter Huiaber of Years:")

labels.pack ()

text3=Entry ()

text3.pack()

button=Button(text-"Calculate")

button.pack()

button.bind("<But.t on-1>" , getValueJ

mainloop() • !

|Ln: 50|GptO

Figure 2-5. Source code for part of a Python program that calculates compound interest.

.JflUSl

www.manaraa.com

14

Compouhci •i. - -1D1X1

Enter Principal

11000
Enter Rate (real)

I__
':•;• Enter Number ofYear?

:fTo~
iCalculatel

:The compounded value is:$1628.89

Figure 2-6. GUI for a Python program that calculates compound interest.

2.3 Distinctive Features

The teaching approaches described above each have characteristics that their

proponents claim make their approach superior to the others for teaching object-oriented

programming. Advocates of the "objects-first" approach using BlueJ believe that

focusing on high-level concepts (graphical representations of classes and objects)

contributes to a better overall understanding of object-oriented programming than

focusing on low-level concepts (lines of source code) (Kolling, Quig, Patterson, and

Rosenberg, 2003). Advocates of the "imperative-first" approach using Python claim that

its simple syntax, easy-to-use graphics libraries, and support for small- as well as large-

scale object-oriented program development make it particularly suitable for teaching

introductory programming (Agarwal and Agarwal, 2005, 2006). Finally, Alice's

advocates believe that blending traditional problem-solving techniques with Hollywood-

style storyboarding will enable students to readily create compelling object-based

programs, thereby improving motivation, reducing attrition, and smoothing the road to

www.manaraa.com

learning professional object-oriented languages such as C++ or Java (Dann, Cooper, and

Pausch, 2006).

www.manaraa.com

16

CHAPTER 3: REVIEW OF NOVICE PROGRAMMER LITERATURE

3.1 Programming Language Knowledge

3.1.1 Procedural and Functional Languages

Early studies of programmers focused on novices learning procedural and

functional languages. These studies frequently involved identifying what concepts

novice programmers are actually learning (or failing to learn) and what misconceptions

they have.

Bonar and Soloway (1983) used video-taped interview studies that focused on

bugs and buggy programs to gain insight into how novices use a programming system.

They found that while novices generally understand what task a program is to carry out,

they have difficulty translating that task into program code.

Soloway, Bonar, and Ehrlich (1989) explored the relationship between the

strategies Pascal programmers use when solving problems involving loops and the

looping constructs they choose to implement their solutions. Results of their study

indicated that people prefer a looping strategy that reads and processes the ith element on

the il pass through the loop, as opposed to a strategy that processes the ith element and

reads the (i + If1 element on the z'th pass through the loop. Soloway, Bonar, and Ehrlich

also found that people are more likely to write correct programs when programming in

languages that facilitate their preferred cognitive strategy.

Kessler and Anderson (1989) investigated novice learning of control structures

within the context of a LISP-like programming language called SIMPLE. Specifically,

they studied students' ability to write recursive functions and iterative functions and to

www.manaraa.com

17

transfer between these two programming skills. Experimental results showed positive

transfer from writing iterative to recursive functions, but no transfer from writing

recursive to iterative functions. In general, the students had difficulty understanding

flow-of-control concepts.

3.1.2 Object-Oriented Languages

More recent studies have focused on novices learning to program in the object-

oriented paradigm. Two of the four described below were longitudinal studies.

Ragonis and Ben-Ari (2005) investigated high school students learning object-

oriented programming using Java and BlueJ over the course of two academic years.

Specific goals of their study involved identifying key concepts of object-oriented

programming that novices should be taught, the order in which these concepts should be

taught, and the conceptions novices build as well as the difficulties they encounter trying

to learn these concepts. Study results indicated four main categories of object-oriented

concepts: class vs. object, instantiation and constructors, simple vs. composed classes,

and program flow. A total of fifty-eight conceptions and difficulties were identified.

Stamouli and Huggard (2006) conducted a phenomenographic study over an

entire academic year to investigate first-year undergraduate computer science students'

understanding of the principles of object-oriented programming using Java. They found

that over half of the students did not attain a mature understanding of what learning to

program really means. They also found that most of the students perceived program

correctness as syntactic (language-based) and functional (problem-based) correctness.

The researchers propose that their findings suggest a relationship between the two

themes.

www.manaraa.com

18

Wiedenbeck and Ramalingam (1999) compared the comprehension of small

object-oriented and procedural programs by novices. Their goal was to determine the

differences, if any, between novices' mental representations of object-oriented programs

and procedural programs, and the focus of each. Results of their study indicated that

novices' mental representations of small object-oriented programs were strongest in

knowledge related to the function of the program, whereas novices' mental

representations of small procedural programs were strongest in knowledge related to the

program text.

Evidence that Alice provides support for teaching and learning object-oriented

programming is still largely anecdotal. Cooper, Dann, and Pausch (2003a) observed that

novice programmers using Alice developed a firm sense of objects and inheritance, as

well as a strong sense of design. They also noticed that although Alice's drag-and-drop

editor prevents syntax errors, most students were able to reproduce the proper syntax

when required to do so in code they wrote for exams (Cooper, Dann, and Pausch, 2003b).

3.2 Programming Misconceptions

Clancy (2004) and Soloway and Spohrer (1989) are both excellent resources for

learning about the misconceptions that beginning programmers commonly hold and the

kinds of errors they typically make. Clancy surveyed research into programming

misconceptions and their causes, followed by suggestions for addressing these

misconceptions. Based on the body of research, he divided programming misconceptions

into two main categories, those caused by inappropriate transfer, and those caused by

confusion about computational models.

www.manaraa.com

19

According to Clancy, sources of inappropriate transfer include:

• English (natural language).

• Mathematical notation.

• Previous programming experience.

• Overgeneralizing from examples.

• Modification of correct rules.

• Misapplication of analogy.

Sources of confusion about computational models include:

• Input.

• Constructors and destructors.

• Recursion.

• Execution of PROLOG programs.

Many of the examples of research addressing programming-related

misconceptions that Clancy (2004) cited may be found in Studying the Novice

Programmer (Soloway and Spohrer, 1989). Bonar and Soloway (1989) discovered that

novice programmers learning Pascal confused the meaning of "while" in natural language

with its meaning in the Pascal programming language. One subject inferred that since

"while" is typically used as a continually active test in natural language, it can be used

similarly in the Pascal while loop. Putnam, et al. (1989), found that high school students

learning BASIC could not reconcile what they had learned in algebra with what they

were learning in BASIC. One student in particular indicated that the statement LET C =

C + 1 did not make sense and must be an error. The researchers also found that these

students generally experienced difficulty with the concept of reading data (input).

www.manaraa.com

20

DuBoulay (1989) cautions programming instructors against the use of analogies. For

example, comparing a variable to a "box" may lead students to believe that a variable,

like a box, can hold multiple values.

Fleury (2000), also cited by Clancy (2004), identified misconceptions related

specifically to object-oriented programming. She found that students taking an

introductory Java course thought that they could assign values to an object's instance

variables using a mutator function without first allocating memory for the object using a

constructor. She also found that they had apparently generated a set of overgeneralized

rules related to Java classes and objects based on a limited set of examples. Specifically:

• Different classes must have different method names.

• Arguments to methods must be numeric types.

• The dot operator must be applied to methods; it cannot be applied to instance or class

variables.

3.3. Scaffolding for Learning Object-Oriented Programming

3.3.1 Definition of Scaffolding

Scaffolding is a form of support that enables a student to solve a problem, carry

out a task, or achieve a goal that would be beyond his capabilities without assistance

(Wood, Bruner, and Ross, 1976). An important characteristic of scaffolding is that it

facilitates the student learning how to perform these activities independently when the

support is removed. Scaffolding was originally used to describe support provided by a

parent or a tutor. Scaffolding is now used increasingly to describe support provided by

software tools, curricula, and other learning resources (Puntambekar and Hiibscher,

2005).

www.manaraa.com

21

3.3.2 Key Features of Scaffolding

The key features discussed here are based on the historical and theoretical roots of

scaffolding and are considered critical to its success (Puntambekar and Hiibscher, 2005).

These are:

• Intersubjectivity - Intersubjectivity, or shared understanding of a task, is attained

when the tutor and the student arrive at a shared understanding of the goal of the task

the student needs to perform.

• Ongoing diagnosis - The tutor must engage in an ongoing diagnosis of the student's

current level of understanding to provide him with appropriate support. This requires

that the tutor reconcile his theory of the task and how it may be completed with his

theory of the performance characteristics of the student (Wood, Bruner, and Ross,

1976).

• Tailored assistance - The tutor adjusts the amount and type of support he provides

based on his ongoing assessment of the student's understanding. This requires

continual interactions between the tutor and the student.

• Fading - This involves gradually removing the support as the student takes

responsibility for his own learning until he can function on his own. At this point the

student is able to generalize the process whereby he completed the task and apply it to

similar tasks.

3.3.3 Scaffolding to Support Learning to Program

Over the years, educators have experimented with various forms of scaffolding to

aid students in learning to program. The teaching approaches and supporting

www.manaraa.com

22

environments discussed in Section 2 are examples of computer-based scaffolds developed

to help students learn to program in object-oriented languages.

3.4 Theories of Learning to Program

It is common knowledge that students have difficulty learning to program.

Theories have been put forth as to why this is so and suggestions made as to how to

remedy the situation.

3.4.1 Constructivism

Constructivism is a theory of learning which claims that students actively

construct knowledge rather than passively absorb it from textbooks and lectures. New

knowledge is created by combining experiential knowledge with existing knowledge, or

by reflecting on existing knowledge (Ben-Ari, 1998).

Constructivist ideas date back to the time of Socrates (Constructivism as a

Paradigm for Teaching and Learning, 2004). Although many have contributed to

constructivist theories, Ernst von Glasersfeld (1990) credits Jean Piaget with being "the

great pioneer of the constructivist theory of knowing today." Piaget was a trained

biologist who developed theories of intellectual development in the child by studying his

own children (Hergenhahn and Olson, 2001). Greatly influenced by Piaget's ideas was

Seymour Papert, probably best known as the inventor of LOGO, a programming

language he created to teach mathematics to elementary school children (Papert, 1993).

Papert's pioneering work has led to the widespread use of computer technology within

constructivist environments (Constructivism as a Paradigm for Teaching and Learning,

2004).

www.manaraa.com

23

Constructivism has been applied successfully to learning topics in mathematics

and science (e.g., Cobb, et al., 1991; Cobb and Steffe, 1983). Pea, Soloway, and Spohrer

observed that a student learning to program also engages in constructivist activities.

Specifically, he actively builds a system of conceptual and procedural knowledge related

to programming. In "The Buggy Path to the Development of Programming Expertise"

they explored how this knowledge-building activity may lead to "errors" or

"misconceptions" in programming and how to increase instructors' awareness with

regard to this phenomenon (Pea, Soloway, and Spohrer, 1987).

Ben-Ari (1998) explores the extent to which constructivism is applicable to

computer science education in general. Ben-Ari contends that many of the difficulties

experienced by a beginning computer science student stem from the fact that he possesses

no effective model of a computer. In other words, he has no existing knowledge in which

to integrate the information about computers and programming he hears in class or reads

in his textbook. Consequently, he must construct his own model of a computer. As an

alternative, Ben-Ari suggests explicitly teaching the model.

Hadjerrouit (1999) describes a pedagogical framework for teaching introductory

object-oriented design and programming based on constructivism. He believes that

constructivism is a particularly appropriate approach for teaching programming in the

object-oriented paradigm because it takes into account a student's previous programming

knowledge and stresses the need for him to actively participate in the construction of

object-oriented knowledge. Hadjerrouit's motivation for developing this teaching

approach was the realization that students experience great difficulty learning abstract

www.manaraa.com

24

object-oriented concepts, and that their learning may be impeded by the presence of

procedural programming concepts.

3.4.2 Assimilation Encoding Theory

Mayer (1989) discusses how to promote meaningful learning of computer

concepts by novices. Meaningful learning takes place in much the same way that the

constructivists claim new knowledge is created. Specifically, meaningful learning is a

process whereby a learner connects new information with knowledge already existing in

memory. The connecting process is called "assimilation." The existing knowledge to

which new information is connected is called a "schema." Learning about computers and

computer programming requires assimilation to schema of new technical information.

Mayer's Assimilation Encoding Theory provides a three-stage model (shown in

Figure 7) of how technical information must be processed to support meaningful learning

(Mayer, 1979). First, the information is "received" in working memory from short-term

memory (arrow "a"). Second, the information is transferred from working memory to

long-term memory if there is knowledge "available" in long-term memory to which to

relate it (arrow "b"). Third, the information is "actively" integrated with relevant existing

knowledge that has been transferred from long-term memory to working memory during

learning (arrow "c").

www.manaraa.com

25

Factors in Learning for Theory .?
(a) Reception: Is information re­

ceived into WM?
(b) Availability: Is there anchor*

ing knowledge in LTM?
(c) Activation: h anchoring

knowledge transferred from
LTM to WM so that it can be
actively integrated with re­
ceived information?

ENCODING: Integrate anchoring
knowledge and received infor­
mation: then transfer new cog­
nitive structure to LTM.

Figure 3-1. Model of Assimilation Encoding Theory (Mayer, 1979).

Mayer (1989) explored techniques for increasing novices' understanding of

computer programming that involved activating relevant existing knowledge in long-term

memory. Called "relevant anchoring ideas" by Ausubel (1968), two techniques that

Mayer explored are: 1) provide the learner with a concrete model of the computer and 2)

encourage the learner to explain technical information in his own words. Results of a

series of studies indicated that both techniques may lead to enhanced conceptual learning

of technical information, as measured by learners' ability to solve novel problems.

3.4.3 Advance Organizers

The term "relevant anchoring ideas" derives from Ausubel's work on advance

organizers (Ausubel, 1960, 1968). Ausubel (1968) described advance organizers as

"appropriately relevant and inclusive introductory materials" presented before the

learning material itself and at a higher level of abstraction, generality, and inclusiveness.

The purpose of the organizer was to provide "ideational scaffolding" for incorporating

and retaining the detailed information in the learning material that followed. While

THEORY 3

SHORT TERH

HEHORY
f»> S

(c

WORKING

MEMORY

>M
10NG TERK
M£H0RY

(b)

www.manaraa.com

26

Ausubel restricted advance organizers to abstract stimuli, Mayer and other researchers

extended them to include concrete physical analogies (Mayer and Bromage, 1980).

3.5 Model of Object-Oriented Programming

A beginning computer science student possesses no effective model of a

computer. Ben-Ari and others propose providing the student with one to use to integrate

new incoming information about computers and programming. An alternative approach

would be to provide him with support (i.e., some form of scaffolding) for constructing his

own model. One of the purposes of this research is to identify ways of doing precisely

that.

3.6 Transfer in Computing Environments

3.6.1 Definition of Transfer

Merriam-Webster's Collegiate Dictionary (2003) defines transfer as "the

carryover or generalization of learned responses from one type of situation to another"

(definition 2b). Although the definition seems perfectly straightforward, researchers

interpret transfer of learning in many different ways. According to Barnett and Ceci

(2002), "there is little agreement in the scholarly community about the nature of transfer,

the extent to which it occurs, and the nature of its underlying mechanisms."

3.6.2 Theories of Transfer

In spite of the controversy, the idea of transfer is still traditionally based on

theories of common elements. Thorndike (1906) proposed a theory of identical elements

which stated that training in one type of mental function or activity would transfer to

another only if the two activities shared common stimulus-response elements. The

common elements in Thorndike's view involved associations between concrete entities.

www.manaraa.com

27

Singley and Anderson (1989) resurrected Thorndike's theory of identical elements and

recast it in abstract form. Using the ACT* theory of skill acquisition (Anderson, 1983),

they redefined Thorndike's identical elements as mental elements instead of physical

elements. Essentially, they replaced Thorndike's concrete stimulus-response pairs with

abstract condition-action pairs called productions. According to Singley and Anderson's

modified version of the theory, transfer occurs to the extent that sets of productions for

different tasks overlap.

An alternative model of transfer that may prove beneficial to this research bears

mentioning. It is the "actor-oriented transfer" model proposed by Lobato (2003), which

emerged from her work with design experiments that explored transfer of algebraic

concepts. The classical approach to transfer focuses on the degree to which a learner

applies knowledge learned in one situation to a new situation based on the researcher's

(or another expert's) model of performance. The actor-oriented approach to transfer de-

emphasizes degree, and focuses rather on the influence of any previous activities on a

learner's behavior in a novel situation, including the ways in which learning generalizes

(Lobato, 2006).

3.6.3 New Learning as Transfer from Previous Learning

The constructivists believe that students actively construct new knowledge by

combining experiential knowledge with existing knowledge. Bransford, Brown, and

Cocking (1999) paraphrase this as "all learning involves transfer from previous

experiences." They point out that previous learning can help as well as hinder students'

ability to learn new information. For example, children's experiences with counting and

putting things together when they play help them to learn addition and subtraction of

www.manaraa.com

28

whole numbers when they begin school. Unfortunately, these same experiences

undermine children's abilities to learn operations with fractions, which are not based on

the same underlying principles as whole numbers (e.g., you can't generate a fraction by

"counting things"). With respect to computer programming, Hadjerrouit (1999) found

that students' ability to learn object-oriented programming was somewhat impeded by

their previous experience with procedural programming.

3.6.4 Transfer Between Programming Languages and Text Editors

Studies have been conducted to investigate transfer of skills between

programming languages and transfer of skills between text editors. Scholtz and

Wiedenbeck (1990a) studied moderately experienced programmers transferring to a new

programming language to determine the kinds of knowledge that transfer and the areas in

which programmers experience difficulties. They found that programmers encounter the

most difficulty trying to figure out how to implement a problem solution in the new

language, whereas issues of syntax and semantics present them with minimal difficulty.

Singley and Anderson (1985, 1988, 1989) studied computer-naive subjects from a

local secretarial school learning to edit text using three different text editors. Two of

these were classified as line editors, while the third was classified as a screen editor.

Singley and Anderson's goal was to study transfer of text-editing skill between the line

editors and from the line editors to the screen editor. In general, they found positive

transfer of skill both between the line editors and from the line editors to the screen

editor.

www.manaraa.com

29

CHAPTER4: EDUCATIONAL ASSESSMENT

4.1 Assessment in Computing

In spite of its unpopularity with students, testing is still the preferred method for

ascertaining the effectiveness of educational endeavors. An instructor who wishes to

assess his students' learning constructs a test which he then administers to those students.

The results of that test provide the instructor with information about what his students

learned in his classroom based on his instruction. This scenario reflects the current state

of affairs in the field of computer science in which we have no standardized tools to

measure student learning of fundamental programming concepts.

Developing a standardized tool for a field as dynamic as computer science

presents special challenges. Computing educators use a variety of approaches and

languages to introduce students to computer programming. A "language independent"

tool that could be administered at both the beginning and at the end of a course would

enable educators to objectively measure student learning and assess the effectiveness (or

ineffectiveness) of their particular methodologies. For example, do students learn object-

oriented concepts better when taught with an "objects-first" or a "programming-first"

approach? Does programming language make a difference when teaching students about

modular programming (the practice of breaking a program into manageable chunks that

can be easily re-used)?

Several years ago, researchers at another educational institution began work on a

language independent tool to assess learning of fundamental computer science concepts.

An experimental version of this tool was used in the pilot study. Although I was aware

www.manaraa.com

30

that the developers of the tool were now in the process of validating it, they were not

willing to share it. Since their experimental tool was the best computer concepts

assessment tool I could find, I adapted it for use at the two universities where the study

was conducted.

The chapter proceeds by reviewing assessment in general, followed by a

discussion of tools to assess student learning in mathematics, science, and engineering,

fields closely related to computer science. It continues by examining recent efforts to

develop assessment tools for computer science. The remaining sections focus on the

process used to develop the computer concepts survey used in this research.

4.2 Principles of Assessment

Educators use a variety of tools and techniques to evaluate student performance in

a particular subject area. These tools and techniques reflect two the key principles of

assessment (Bransford, Brown, and Cocking, 1999):

• What is assessed must be in agreement with one's learning goals.

• It should provide opportunities for feedback and revision.

4.3 Approaches to Assessment

The two principles cited above correspond to two disparate approaches to

assessment, one traditional, the other contemporary. The first principle corresponds to

the traditional approach, called "summative" assessment. The second principle

corresponds to the contemporary approach, called "formative" assessment (Bransford,

Brown, and Cocking, 1999; Even, 2005).

Summative assessment typically involves giving students a paper-and-pencil test

at the end of a unit of study to measure what they have learned. The grades assigned on

www.manaraa.com

31

the test represent the students' level of achievement and may also be used to classify or

rank the students.

Formative assessment generally takes place in the classroom as a part of

instruction. Examples include teachers' comments on students' work in progress, such as

math worksheets, computer programs, or drafts of papers. Formative assessment

emphasizes providing feedback to increase students' learning and transfer and obtaining

feedback to inform teachers' instructional decisions.

Ideally, teachers should use a combination of summative and formative

assessment in their teaching. In reality, summative assessment is still the norm in many

classrooms (Bransford, Brown, and Cocking, 1999). This is because many teachers,

parents, and students still equate effective learning with memorizing facts and

procedures, a belief bolstered by the many standardized tests that overemphasize these

same skills. Determining the depth of students' conceptual understanding requires

formative assessment techniques, however.

4.4 Existing Tools

4.4.1 Mathematics, Science, and Engineering

Many tools exist or are under development to assess student learning in subjects

such as mathematics, science, and engineering. The Algebra End-of-Course Assessment

(2009) is a multiple-choice test that K-12 math teachers can use to measure student

understanding of first-year algebra concepts. The Force Concept Inventory (FCI) is a

multiple-choice test that college physics instructors can use to assess student

understanding of fundamental concepts in Newtonian physics (Hestenes, Wells, and

Swackhamer, 1992). Thermal-science concept inventories have been jointly developed

www.manaraa.com

32

by personnel from the University of Wisconsin-Madison and the University of Illinois

Urbana-Champaign. Designed specifically for mechanical engineering undergraduate

students, the three concept inventories evaluate student understanding of concepts in

thermodynamics, fluid mechanics, and heat transfer (Mitchell and Martin, 2007).

Assessment tools are also under development in biology, calculus, and chemistry, to

name but a few (Allen, 2007).

4.4.2 Computing

Assessment tools for computing are sorely lacking. There are two reasons for this

unfortunate state of affairs. The first is that the field of computing, by its very nature, is

highly dynamic. The second is that while the ACM and IEEE provide curricular

guidelines for undergraduate programs in computing (CS2008 Review Taskforce, 2008;

Joint Task Force on Computing Curricula, 2001), there are no actual standards per se as

there are in fields like math and science. A step was taken in that direction, however,

when, in April 2000, the International Technology Education Association (ITEA) and its

Technology for All Americans Project (TfAAP) published Standards for Technological

Literacy: Content for the Study of Technology. This document defines technological

literacy, and articulates the knowledge and abilities students in grades K-12 need to

become technologically literate. It does not provide a curriculum, however (ITEA,

2007). The International Society for Technology in Education (ISTE) also publishes the

one-page National Educational Technology Standards (NETS'S) and Performance

Indicators for Students (NETS'S, 2007), which outlines six areas in which students

should possess technological competency. These include understanding technology

concepts, systems, and operations, among others.

www.manaraa.com

33

The Educational Testing Service (ETS) maintains the Carl C. Brigham Library

Test Link database of more than 25,000 tests created by authors inside and outside of the

ETS. Querying the database for the search term comput* in the title field yielded over

100 matches which included:

• Advanced Placement Program: Computer Science A Exam

• Certificate in Computer Programming Examinations

• Computer Literacy Examination : Cognitive Aspect

• Computer Science Placement Exam

• Computer Science Test for Grades Nine Through Twelve

• Major Field Tests: Computer Science

• Student Occupational Competency Achievement Testing: Computer Programming

Unfortunately, based on their descriptions, none of these tests is appropriate for assessing

fundamental programming knowledge. In other words, there is no computer science

equivalent of the Force Concept Inventory.

4.5 A Tool for Introductory Computing

4.5.1 Rationale

The computer concepts survey used in the pilot study (described in Chapter 5)

was a slightly modified version of an experimental tool developed at another educational

institution (The name is being withheld in the interest of confidentiality.). In order to

validate the results of the pilot study and to further investigate the impact of different

teaching approaches on students' ability to learn both fundamental programming

concepts and specific object-oriented programming concepts, it would be better to use a

tool that has been thoroughly tested. Unfortunately, no such tool is currently available.

www.manaraa.com

34

Although I was aware that the developers of the experimental tool were now in the

process of validating the tool, they were not willing to share it. Consequently, I modified

the experimental tool yet again to better suit the student population with which it would

be used. Adjustments were made in accordance with the guidelines laid out in the next

section.

4.5.2 Characteristics of the Tool

A list of guidelines for creating a computer concepts assessment tool was

developed by drawing on personal experience teaching computer science and

programming, the literature on computer concepts inventories under development (Tew

and Guzdial, 2010; Goldman, et al., 2008), and the literature on novice programmers'

errors and misconceptions (Clancy, 2004; Soloway and Spohrer, 1989). A review of this

literature combined with personal experience suggests that an instrument designed to

assess student learning of introductory programming concepts should possess certain

characteristics. Specifically, it should consist of questions and response choices:

1) Based on topics that students generally encounter in a first course in computer

programming (i.e., topics taught in a first programming course).

2) Based on topics that experts agree students should master by the end of a first course

in computer programming (i.e., topics agreed upon by experts).

3) That contain distracters (incorrect answer choices intended to mislead the test taker)

based on the misconceptions that students learning to program commonly hold and

the kinds of errors they typically make (i.e., distracters based on novice errors and

misconceptions).

www.manaraa.com

35

4) Written in a language that is "programming language independent" (i.e., language

independent pseudocode).

1) Topics taught in a first programming course

A good sense of topics generally taught in a first computer programming course

can be obtained by examining sample syllabi from institutions offering such courses. I

looked at syllabi from two different introductory programming courses taught at Rowan

University in Glassboro, NJ (Hartley, 2009; Provine, 2009), and two different

introductory programming courses taught at Drexel University in Philadelphia, PA

(Medlock, 2008; Popyack, 2009). While the topics covered in the four courses were not

exactly the same, they did commonly include: variables, conditionals, loops, arrays,

methods, and objects.

Tew and Guzdial (2010) recently reported on their progress in creating a language

independent CS1 assessment instrument. Section 4 of the paper discusses their strategy

for defining the instrument's content. They began by analyzing the tables of contents of

twelve of the most widely adopted CS1 textbooks to identify a set of common concepts,

then used the Computing Curricula 2001 Computer Science guidelines for conceptual

content of introductory programming courses to refine the list.

2) Topics agreed upon by experts

Efforts are being made at both the undergraduate and pre-college (K-12) levels to

arrive at a consensus regarding topics in computing that should constitute a standardized

curriculum in computer science education. In 2006, the Computer Science Teachers

Association (CSTA) published the second edition of the ACM Model Curriculum for K-

www.manaraa.com

36

12 Computer Science. According to the executive summary, the purpose of this report is

to propose "a model curriculum that can be used to integrate computer science fluency

and competency throughout primary and secondary schools, both in the United States and

throughout the world." In addition, "It provides a framework within which state

departments of education and school districts can revise their curricula to better address

the need to educate young people in this important subject area, and thus better prepare

them for effective citizenship in the 21st century." (CSTA, 2005)

As discussed in the section on assessment tools for computing, the ACM and

IEEE provide curricular guidelines for undergraduate programs in computing (CS2008

Review Taskforce, 2008; Joint Task Force on Computing Curricula, 2001). The

Programming Fundamentals knowledge area defines the skills and concepts that students

must master to become proficient programmers regardless of paradigm. Of the eight core

topics, fundamental constructs, algorithmic problem solving, data structures, recursion,

object-orientation, and secure programming are the six regularly included in introductory

programming courses. (The remaining two are event-driven programming and

foundations of information security.)

www.manaraa.com

37

In 2008, Goldman, et al. (2008) employed a Delphi process to identify important

and difficult concepts in college-level introductory computing courses. The experts who

participated in the study agreed upon eleven topics for the particular area of programming

fundamentals. Arranged in order from most important to least important, these are:

• Procedure design.

• Conceptualize problems, design solutions.

• Issues of scope, local vs. global.

• Functional decomposition, modularization.

• Designing tests.

• Parameter scope, use in design.

• Debugging, exception handling.

• Abstraction/pattern recognition and use.

• Recursion, tracing and designing.

• Inheritance.

• Memory model, references, pointers.

In light of the current emphasis on object-oriented programming, it is worth noting that

only one of the eleven topics, inheritance, is exclusively object-oriented.

The Goldman, et al., study was conducted as part of a multi-institution project led

by Craig Zilles to develop concept inventories for three introductory computer science

subjects: discrete math, digital logic design, and programming fundamentals (Concept

Inventories, 2010). Using a Delphi process to identify important and difficult concepts is

step one of the four-step process the project investigators plan to use to develop the

inventories. Steps two through four are: identify common misconceptions for those

www.manaraa.com

38

concepts, design questions using those misconceptions, and validate the concept

inventory (Goldman, et al., 2008). According to the information posted on the publicly

accessible portion of their Web site (Concept Inventories, 2010), the only concept

inventory on which they have done extensive work is the concept inventory for digital

logic design. Herman, Loui, and Zilles (2010) describe the process used to create and

evaluate an alpha version of the digital logic concept inventory that was administered to

203 students from the University of Illinois at Urbana-Champaign in Spring 2009.

3) Distracters based on novice errors and misconceptions

Clancy (2004) and Solo way and Spohrer (1989) are good resources for learning

about beginning programmers' errors and misconceptions. This literature was reviewed

in Chapter 3.

The focus here is on the use of novice errors and misconceptions to inform the

development of incorrect answer choices. However, errors commonly made and

misconceptions commonly held can also inform the development of the questions

themselves. A good example is a question that asks a student to trace the code for a

"while" loop in which the loop control variable never gets incremented (a very common

error!).

4) Language independent pseudocode

A good model for an appropriate pseudocode is that employed in Mathematical

Structures for Computer Science (Gersting, 2007). Gersting defines pseudocode as a

compromise form for describing algorithms that is readily understood by

nonprogrammers. It is, in her words, "a form that is a middle ground between a purely

verbal description in paragraph form and a computer program written in a programming

www.manaraa.com

39

language." The pseudocode that Gersting employs is a cross between English and a

Pascal-like procedural language. It is particularly suitable for students with minimal

programming experience. Two samples from her book appear in Figures 4-1 and 4-2.

www.manaraa.com

GGD(positive integer a; positive integer b)
lla^b

Local variables:
integers i,j

i = a
j=b
while 7 5*0 do

compute i — qj 4- r, 0 ̂ r <j
i=J~
j=r

end while

///now has the value gcd(a, b)
return r;

end function GCD

Figure 4-1. Pseudocode for Euclidean Algorithm (Gersting, 2007).

BmarySearch()ist L; integer ii integer/; itemtype x)
//searches sortedlistLfromZ.[jJ] to L[j] for itemx

if i>/then
writep'nqt found")

else
find the index k of the middle item in the list ![/]-£[/]
if x = middle item then

write("found")
else

if x < middle item then
BinarySearch(L, i, k — 1, x)

else
BinarySearch(L, k + 1,/^JC)

end if
end if

end if
end function BinarySearch

Figure 4-2. Pseudocode for BinarySearch Algorithm (Gersting, 2007).

www.manaraa.com

41

4.5.3 Tool Development

The assessment tool used in this research was created by modifying the

experimental tool used in the pilot study. The topic areas are based on the core topics

defined in the ACM/IEEE guidelines' Programming Fundamentals knowledge area

(CS2008 Review Taskforce, 2008), i.e., the Topics agreed upon by experts, as well as the

Topics taught in a first programming course, discussed in Section 4.5.2. In addition, it

seemed important to include a question asking students to rank the difficulty level of the

computer concepts survey using a Likert-type scale. The current tool employs a multiple-

choice format in which questions consist of a stem (actual question) and four possible

responses. Of the four responses, one is correct, while the others are distracters (incorrect

responses).

Analysis of the pilot study results revealed features of the experimental tool that

needed to be adjusted for further use with Rowan and Drexel students. A few of the

questions were too easy, while others were too hard. In addition, many distracters were

never chosen. Finally, the pseudocode was unlike the pseudocode that Rowan and

Drexel students are accustomed to seeing in their computer programming classes.

Adapting the experimental tool entailed modifying the question stems, responses,

and pseudocode. Ideas for questions to replace those that were too easy or too hard were

drawn from programming textbooks, personal experience teaching programming, and, in

one case, a sample major field test for computer science. Ideas for distracters to replace

those that were never chosen were drawn from the literature on novice programmers'

errors and misconceptions (discussed in Distracters based on novice errors and

misconceptions, Section 4.5.2), personal teaching experience, and personal experience

www.manaraa.com

42

doing SAT test preparation. The pseudocode was modeled after the pseudocode used by

Gersting (discussed in Language independent pseudocode, Section 4.5.2) and the

pseudocode used by a member of the Drexel Computer Science faculty in a diagnostic

test he developed.

4.5.4 Reliability and Validity of the Tool

Measurement experts currently associate validity with a set of scores rather than

with the assessment tool used to produce them (American Educational Research

Association, American Psychological Association & National Council on Measurement

in Education, 1999). Simply put, validity has to do with the meaning of the scores and

how we use them. It also has to do with the item responses that are aggregated to form

the scores (Haladyna, 2004). According to Ebel and Frisbie (1991), validity has two

aspects: what is measured and how consistently it is measured. Area of measurement

refers to a particular cognitive ability of interest. Consistency of measurement refers to

reliability. Reliability is a necessary but not sufficient condition to ensure validity.

www.manaraa.com

43

A variety of methods exist for estimating score reliability (Ebel and Frisbie,

1991). These include test-retest, equivalent forms, split halves, Kuder-Richardson, and

Cronbach's alpha. The methods used in this research estimated reliability using

information internal to the test. They are:

• Kuder-Richardson - Kuder and Richardson (1937) developed two of the most widely

accepted formulas for estimating reliability, K-R20 and K-R21. K-R20 uses number

of test items, proportion of correct/incorrect responses for each item, and variance of

test scores to estimate reliability. K-R21 uses test mean in place of proportion of

correct/incorrect responses for each item to estimate the value of K-R20.

• Cronbach's alpha - This method, unlike K-R20, can be used to estimate reliability for

tests that employ weighted scoring. The formula is similar to K-R20 and uses

number of test items, variance of each item, and variance of test scores to estimate

reliability.

Researchers developing assessment tools comparable to the computer concepts

assessment tool have used either K-R21 or Cronbach's alpha to measure reliability

(Herman, Loui, and Zilles, 2010; Nugent, Soh, Samal, and Lang, 2006), hence the choice

of internal consistency measures. K-R21 is easy to use, but may underestimate the

reliability coefficient depending on the average scores of the individual test items (Ebel

and Frisbie, 1991). Cronbach's alpha was therefore used to obtain a second measure of

reliability. The K-R21 and Cronbach's alpha formulas are similar, so their results will be

similar, but the Cronbach's alpha reliability estimates will usually be a little higher.

The decision was also made to obtain separate reliability ratings for the pre-test

and the post-test instead of obtaining a single, overall reliability rating. Analysis of the

www.manaraa.com

44

demographic surveys indicated that some of the students had not been exposed to all of

the programming concepts before taking the pre-test. By the time they took the post-test,

they would have been introduced to all of the concepts. Consequently, it was decided to

measure reliability separately for the pre- and post-test.

Validating test scores requires gathering evidence to support how the scores are

interpreted and used. It is more difficult to demonstrate than reliability because there is

no simple prescription for determining the forms of evidence that will be sufficient. The

three general categories of validity evidence are content-related, criterion-related, and

construct-related (Ebel and Frisbie, 1991). The two most appropriate for this research

are:

• Content-related - This type of evidence deals with how well the content of the test

represents the domain of knowledge, skills, and tasks the test is intended to measure.

• Construct-related - This type of evidence deals with what the test scores mean as a

psychological construct. For example, if a test is intended to measure the

psychological construct "understanding of fundamental programming concepts," is

there sufficient evidence to show that it does?

Approaches used in this research to demonstrate content validity included:

• Insuring that the questions making up the computer concepts inventory addressed

core concepts of the Programming Fundamentals knowledge area defined by the

2008 ACM/IEEE curricular guidelines.

• Psychometric analysis techniques (section 8.5.3) to show that a majority of the

inventory questions effectively discriminated between students who performed well

on the inventory from those who did not.

www.manaraa.com

45

• Psychometric analysis techniques (section 8.5.2) to show that all distracters were

chosen and that many of the distracters exhibited desirable response patterns (i.e., the

percentage of students choosing distracters was inversely related to the students'

scores).

• Expert reviews of the questions and corresponding answer choices for

appropriateness.

Approaches used in this research to investigate construct validity included:

• Factor analysis to determine which questions should be removed from the computer

concepts inventory because they did not meet the acceptable load threshold of 0.4.

• Factor analysis to determine how well the inventory questions grouped into the

constructs they were intended to measure.

www.manaraa.com

46

CHAPTER 5: PILOT STUDY

5.1 Purpose

A pilot study was conducted to investigate the effectiveness of disparate teaching

approaches currently being used to help students learn to program in object-oriented

languages.

5.2 Participants

Fourteen students enrolled in two different C++ courses (CS 131, CS 171) during

the Fall 2008-2009 and Winter 2008-2009 terms at Drexel participated in the study.

Students in these particular courses were targeted for recruitment because of their

previous programming experience. Students enrolled in CS 131 generally take an earlier

course (CS 130) that introduces them to programming using Alice. Alice is a three-

dimensional (3-D) graphics programming environment that minimizes the frustration of

learning to program by enabling students to create compelling programs without ever

writing a line of code. Students enrolled in CS 171 generally take courses that introduce

them to programming using languages such as JavaScript or Python. Students learn to

program in these languages by writing source code in text-based environments.

5.3 Task

All fourteen participants completed the study, which consisted of two sessions.

They were paid for their participation. The first session was scheduled near the

beginning of the term, while the second session was scheduled near the end of the term

(or at the start of the following term). During the first session, each student was asked to

complete three surveys: a demographic survey to obtain information about his

www.manaraa.com

47

background; an attitude survey to gain insight into his attitude toward computer science

and programming; and a computer concepts survey to assess his knowledge of computer

programming concepts. Students who participated in the study during the Winter 2008-

2009 term were also asked to solve a simple programming problem at the computer.

During the second session, each student was asked once again to complete the attitude

and computer concepts surveys. Those who participated during the Winter 2008-2009

term were asked to solve a slightly harder programming problem. Most of the students

completed each session in an hour or slightly more. The sessions were not timed.

5.4 Results

The data obtained from the demographic and computer concepts surveys is of

most interest to me. However, after recording the participants' responses to the questions

on the computer concepts survey, it seemed necessary to find a way to compute pre- and

post-test scores for each participant that accounted for correct responses, incorrect

responses, and non-responses (i.e., omissions). The algorithm used to compute a raw

score on the multiple-choice portions of the SAT seemed appropriate. Specifically, " 1 " is

assigned for each correct response, "-l/(number of incorrect responses)" is assigned for

each incorrect response, and "nothing" (i.e., "0") is assigned for non-responses.

Applying that algorithm yielded the summarized results for sessions one and two that

appear in Appendices B and C. The results of the demographic survey appear in

Appendix A.

Ten of the fourteen participants majored in areas other than Computer Science

and Software Engineering. These students possessed the programming backgrounds

www.manaraa.com

48

closest to what I had been looking for in study participants. Consequently, the

subsequent summary and analysis will focus on the performance of these ten students.

The ten students of interest included five Physics majors, one Information

Technology major, two Mathematics majors, and two Digital Media majors. The Physics

and Information Technology majors had programmed mainly in Python. The

Mathematics and Digital Media majors had programmed mainly in Alice. The Excel

spreadsheets that follow (Figures 5-1 and 5-2) display the mean pre- and post-test scores

for these two groups of students, as well as the mean pre- and post-test scores for all of

the students who participated in the study. The spreadsheets also display the percent

change in these scores. Scores were calculated for categories of questions and for the

computer concepts survey as a whole. The two spreadsheets show the different ways in

which questions were grouped into categories. The shaded regions highlight findings that

I found to be of particular interest.

Session 1 Scores

Loops Loops

Logical (vv/o (w/ Arrays

Means Basics Operators if arrays) arrays) Functions (only} Objects Overall Definition Trace Write

Overal l Mean

Al ice Mean

Python Mean

Session 2

Means

Overa l l Mean

A l i ce M e a n

Pythof t Mean

Percent Change

Means

Overal l Mean

A l i ce Mean

Py thon Mean

1 715

J 334

1.534

Scores

Basses

a ? 6 j

2 000

1 .1M

Scores

Bastes

HFr

>9 m
-26 .0 /%

0.715

1.667

0.467

Logical

Operators

0.762

0.334

0.934

Logical

Operators

6.67%

-79.98%

39 .91%

1.667

2 6o7

0 .86 /

f

1.857

2.000

1.667

f

1142")

24 99%

92.23%

1.310

. M l ?

1.400

Loops

| w / o

arrays)

1.762

2.667

0.86?

Loops

' u / o

arrays,

34 53 ,

88 2!)%

-3&M*

0.857

0 334

1 2 0 0

Loops

arrays)

0.762

0 334

0 667

Loops

iW
arr „ /=)

11 l O ' i

0.00%

-44 43%

0.356

0,t)f}t!

0 393

f u n c t i o n s

0 23S

1.001

0.4§6

t-UrjCIOrts

167 »>1*

250,2854

- J 6 . 6 M

0.548

0 334

0 533

Arrays

<on l , |

0.810

0 334

1.000

Arrays

(on ly)

47 .81%

0 00%

8 7 4 8 %

1.715

.1 334

1 . 2 B ?

Oblects

1 8 1 0

1 1 6 7

JSOn

Objects

5 555,

36 35%

42.08%

8.169

8.919

6.870

Overal l

9.764

9.836

7.603

Overal l

19.52%

10.2855

10.58%

4.025 2.215

4.085 2.668

3.202 2.467

De f i n i t i on Trace

4.739 2.66S

4.751 1 668

3.402 2.801

De f i n i t i on Trace

17.74% 20.42%

16.32% •37 4S3'.

6.25% 13 .51%

1,929

•3,16/

. 1.201

Wf . te

2,358

3.417

M M

wire
22 n%
57 67%

16.66ft

Figure 5-1. Mean pre-test (session one), post-test (session two), and percent change scores for pilot
study (categorization scheme one).

www.manaraa.com

49

Session 1 Scores
Logical

Means Basics Operators if For While Functions Arrays Objects Overall Definition Trace Write

; Overal l Mean

Al ice M e a n

Py thon M e a n

Session 2

Means

Overal l IVlean

Al ice Mean

Py thon M e a n

Percent Change

Means

Overal l Mean

Al ice Mean

Python M e a n

1 7 1 5

1 3 1 4

1.534

Scores

Basics

1 7 6 2

2 000

'::;i:4:»«

Scores

Basics

2.78%

49.37%

.'-i&.b5%

0.715

1 6 6 7

0 4S7

Logical

Operators 11

0.762

0.334

0.334

Logical

Operators 11

6.67%

-79.98%

9 9 . 9 1 %

1.607

2 667

0.867

1.857

2 3O0

1.567

11.42%

24 99%

92.2356

1.405

1.084

* . *57

For

1.953

2.000

. jywo

f o r

38.96r<;

84,5 7%

- I 5 . 9 9 &

0.702

0.667

0.934

Wh i l e

0.572

1,000

0.134

W h i l e

-24.98%

49 96%

85.S75S

-0.356

~0.«66

• - O J * }

Funct ions

0.239

1.0H1

•/•:.-f)jm

J-unctions

157 0 1 %

250 2 8 ^

- I 6 . 6 8 &

0.548

0.334

0.S33

Arrays

0.310

0 334

1.000

Arrays

47 .81%

0 00%

S7.4SK

1 715

1S34

=._ :il2tS7

Objects

1 810

1 1 6 ?

18B0

Ob.ects

5 55%

-36.35%

42*.08$

8.169

8.919

6.S70

Overal l

9.764

9.836

7.603

o v e r a l l

19.52%

10.28%

10.68%

4.025 2.215

4.085 2 668

3.202 2.467

De f i n i t i on Trace

4.739 2.668

4.751 1 608

3.402 2 801

De f i n i t i on Trace

17.74% 20.42%

16.32% 37 48%

6 . 2 S * 13 S l «

1,929

2.1*37"

1.201

Wr i te

7 358

3-.11?

1.401

Wr i te

22 .21%

5 7 6 7 %

• *&.1A%

Figure 5-2. Mean pre-test (session one), post-test (session two), and percent change scores for pilot
study (categorization scheme two).

5.5 Analysis

The findings were both interesting and unexpected. (Note: For the purpose of this

discussion, the students who had programmed mainly in Python will be referred to as the

"Python programmers," and the students who had programmed mainly in Alice will be

referred to as the "Alice programmers.") For example, the Alice programmers

outperformed the Python programmers on the questions involving objects in session one

(as predicted), but the situation was reversed in session two. Overall, the Python

programmers exhibited a 42.1% increase in performance on the objects questions,

whereas the Alice programmers exhibited a 36.4% decrease in performance. The

situation was similar for the questions involving tracing code. In session one, the Alice

programmers once again outperformed the Python programmers, but in session two, the

opposite occurred. Overall, the Python programmers exhibited a 13.5% increase in

performance on the code tracing questions, whereas the Alice programmers

www.manaraa.com

50

exhibited a 37.5% decrease in performance. (The prediction was that the code-based, in

this case Python, programmers would prevail on questions involving program flow.)

The results from the questions involving writing code were unexpected (although

the write questions merely required students to recognize the correct programming

solution, not actually author it). The Alice programmers outperformed the Python

programmers in both sessions (not as predicted). In fact, from session one to session two,

the Alice programmers exhibited a 57.7% increase in performance on the code writing

questions, whereas the Python programmers exhibited only a 16.7% increase in

performance.

Both groups of programmers performed similarly in session one on the questions

involving basics, loops (without arrays), functions, and arrays (only, no loops). These

results did not carry over to session two, however. From session one to session two, the

Alice programmers exhibited an increase in performance on the basics, loops (without

arrays), and functions questions, whereas the Python programmers exhibited a decrease

in performance on those questions. Interestingly, the increase in performance

demonstrated by the Alice programmers on the functions questions was an incredible

250.3%!

The overall improvement in performance for the two sessions was comparable,

10.3% for the Alice programmers andlO.7% for the Python programmers.

www.manaraa.com

51

CHAPTER 6: RESEARCH QUESTIONS AND HYPOTHESES

6.1 Research Questions

Explorations into the different teaching approaches and programming languages

currently being used to teach introductory object-oriented (OO) programming led to

questions regarding the impact of these approaches and languages on students' ability to

learn both fundamental and OO programming concepts. Assessing these abilities is best

accomplished using a computer concepts inventory. Since no such tool exists, one was

developed for the purpose of this research. The research questions that follow resulted

from the processes of exploration and tool development described above. They are:

• Q 1: In a field like computer science where there are educational guidelines but no

actual standards, is it possible to create a tool to assess student knowledge of

fundamental and object-oriented programming concepts that is sufficiently "generic"

to be adopted for general use?

• Q 2: What effect does the teaching approach and/or programming language have on

students' ability to grasp fundamental programming concepts (e.g., assignment,

iteration, functional decomposition, program flow, etc.)?

• Q 3: What effect does the teaching approach and/or programming language have on

students' ability to grasp specific object-oriented programming concepts (e.g., class

creation, method invocation, object instantiation, etc.)?

• Q 4: What effect does the teaching approach and/or programming language have on

students' ability to select the correct code to complete the solution to a programming

problem when provided with multiple options?

www.manaraa.com

52

6.2 Related Hypotheses

The next chapter will describe the design of the experiment conducted to

investigate the research questions posed above. The hypotheses that were tested with

respect to the research questions follow.

The hypothesis that was tested with respect to the first research question (Q 1) was:

• H I : The computer concepts assessment tool created for use in this study will prove

effective if a majority of its questions discriminate well between high and low scoring

students.

The hypothesis that was tested with respect to the second research question (Q 2) was:

• H 2: Students taught to program using different approaches and/or languages will

exhibit different strengths and weaknesses with respect to their performance on

questions that test their knowledge of fundamental programming concepts.

The hypothesis that was tested with respect to the third research question (Q 3) was:

• H 3: Students taught to program using the "objects-first/objects-early" approach will

perform better on problems that test their knowledge of object orientation than

students taught to program using the "programming-first" approach.

The hypothesis that was tested with respect to the fourth research question (Q 4) was:

• H 4: Students taught to program using highly structured languages will perform better

on code-completion problems than students taught to program using less structured

languages.

www.manaraa.com

53

CHAPTER 7: EXPERIMENTAL STUDY DESIGN

7.1 Purpose of Study

This research study examined the performance of students enrolled in freshman

level programming courses for the purpose of investigating the research questions

outlined in the preceding chapter. It was specifically designed to explore the impact of

different teaching approaches and languages on students' grasp of fundamental and

object-oriented programming concepts using the assessment tool developed for the study.

7.2 Description of Methodology (General)

7.2.1 Time Dimension

The study was an exploratory study conducted over the course of two quarters

(Drexel University) and one semester (Rowan University).

7.2.2 Units of Analysis

The dual nature of the study necessitated two units of analysis. The first was the

computer concepts inventory developed to assess student learning of fundamental and

object-oriented programming concepts. The second was the teaching approach and/or

programming language used in the introductory programming courses.

7.2.3 Units of Observation (Participants)

The units of observation were students enrolled in freshman level programming

courses at Rowan University in Glassboro, New Jersey, and Drexel University in

Philadelphia, Pennsylvania. Details about the students and the courses from which they

were recruited are presented in Chapter 8.

www.manaraa.com

54

7.2.4 Constructs

The indicators described in the Terms or Components section below were used to

evaluate the effectiveness of the computer concepts inventory and to assess the impact of

the different teaching approaches and languages on students' grasp of fundamental and

object-oriented programming concepts.

7.2.5 Terms or Components

Standard item analysis techniques for multiple-choice tests were used to evaluate

the quality of the computer concepts inventory. These techniques are discussed in

parallel with the results of the analysis in Chapter 8.

The computer concepts inventory was developed because indicators were needed

to measure the abstract ideas I wished to study. Specifically, I hoped to identify features

of approaches and languages for teaching introductory object-oriented programming that

fostered/hampered students' ability to:

• Grasp fundamental programming concepts such as assignment, iteration, functional

decomposition, and program flow.

• Grasp specific object-oriented programming concepts such as class creation, method

invocation, and object instantiation.

• Choose the correct code to complete the solution to a programming problem when

provided with multiple options.

A variety of statistical analysis techniques were used to analyze the students'

performance on the computer concepts inventory. These included the repeated measures

ANOVA; the one-way, between-subjects ANOVA; the Tukey test; and the within-

subjects paired samples Mest.

www.manaraa.com

55

Quantitative techniques were also employed to interpret the students' responses to

the demographic and attitude surveys.

7.2.6 Level of Measurement

The level of measurement was predominantly scalar.

7.3 Description of Methodology (Detailed)

7.3.1 Description

This experiment explored the impact of different teaching approaches and

languages on students' grasp of fundamental and object-oriented programming concepts

using the assessment tool developed for the study.

7.3.2 Research Questions

• Q 1: In a field like computer science where there are educational guidelines but no

actual standards, is it possible to create a tool to assess student knowledge of

fundamental and object-oriented programming concepts that is sufficiently "generic"

to be adopted for general use?

• Q 2: What effect does the teaching approach and/or programming language have on

students' ability to grasp fundamental programming concepts (e.g., assignment,

iteration, functional decomposition, program flow, etc.)?

• Q 3: What effect does the teaching approach and/or programming language have on

students' ability to grasp specific object-oriented programming concepts (e.g., class

creation, method invocation, object instantiation, etc.)?

• Q 4: What effect does the teaching approach and/or programming language have on

students' ability to select the correct code to complete the solution to a programming

problem when provided with multiple options?

www.manaraa.com

56

7.3.3 Related Hypotheses

• H I : The computer concepts assessment tool created for use in this study will prove

effective if a majority of its questions discriminate well between high and low scoring

students.

• H 2: Students taught to program using different approaches and/or languages will

exhibit different strengths and weaknesses with respect to their performance on

questions that test their knowledge of fundamental programming concepts.

• H 3: Students taught to program using the "objects-first/objects-early" approach will

perform better on problems that test their knowledge of object orientation than

students taught to program using the "programming-first" approach.

• H 4: Students taught to program using highly structured languages will perform better

on code-completion problems than students taught to program using less structured

languages.

7.3.4 Methodology

Students enrolled in freshman level Java, C++, and Visual Basic programming

courses at Rowan University in Glassboro, New Jersey, and Drexel University in

Philadelphia, Pennsylvania, participated in the study. They were assessed using the

techniques described below and were assured that their performance on study-related

tasks would not adversely affect their course grade in any way.

• At the start of the course, I asked the students to complete three surveys:

o A demographic survey that asked them to provide background information about

their academic level, major, gender, ethnicity, age, programming language

experience, and SAT and ACT math scores.

www.manaraa.com

57

o An attitude survey that asked them to respond to a series of statements designed to

gain insight into their attitudes toward computer science and programming.

o A computer concepts survey that asked them to answer twenty-five multiple-

choice questions designed to assess their knowledge of computer programming

concepts (the computer programming concepts tool described in Chapter 4).

• At the end of the course, I asked the students once again to complete the attitude

survey and computer concepts survey for purposes of comparison.

7.3.5 Data Analysis

The data gathered during the study was analyzed for the purpose of drawing

conclusions regarding the stated hypotheses. The dual nature of the study necessitated

two different forms of analysis:

• Item response pattern analysis, item discrimination analysis, and reliability analysis to

evaluate the effectiveness of the computer concepts assessment instrument.

• Standard statistical techniques that included the repeated measures ANOVA; the one­

way, between-subjects ANOVA; the Tukey test; and the within-subjects paired

samples Mest to analyze the students' performance on the assessment instrument.

The above techniques are discussed in parallel with the results of the analysis in Chapter

8.

Quantitative techniques were also employed to interpret the students' responses to

the demographic and attitude surveys.

www.manaraa.com

58

CHAPTER 8: MAIN STUDY DESCRIPTION AND RESULTS

8.1 Purpose

A research study was conducted to investigate the following research questions:

• Q 1: In a field like computer science where there are educational guidelines but no

actual standards, is it possible to create a tool to assess student knowledge of

fundamental and object-oriented programming concepts that is sufficiently "generic"

to be adopted for general use?

• Q 2: What effect does the teaching approach and/or programming language have on

students' ability to grasp fundamental programming concepts (e.g., assignment,

iteration, functional decomposition, program flow, etc.)?

• Q 3: What effect does the teaching approach and/or programming language have on

students' ability to grasp specific object-oriented programming concepts (e.g., class

creation, method invocation, object instantiation, etc.)?

• Q 4: What effect does the teaching approach and/or programming language have on

students' ability to select the correct code to complete the solution to a programming

problem when provided with multiple options?

8.2 Participants

Sixty-nine students participated in the study. Sixty-four of these were from

Rowan University in Glassboro, New Jersey. The remaining five were from Drexel

University in Philadelphia, Pennsylvania. The Rowan students were enrolled in courses

in Java (CS 113, CS 114), Visual Basic (CS 141), and C++ (CS 103) during the Spring

2009-2010 semester. The Drexel students were enrolled in courses in C++ (CS 132, CS

www.manaraa.com

59

172, SE 103) during the Spring 2009-2010 quarter. Students in these particular courses

were targeted for recruitment because of the level of the course and the programming

language in which it was taught. Specifically, I sought to recruit students taking

freshman level programming courses that employed a variety of languages and teaching

approaches. I also sought to recruit entire classes where possible in order to insure a

wide range of abilities and a diversity of majors among the student participants.

The above students were recruited by contacting the instructors of the courses of

interest, who then advertised the study on my behalf or who graciously invited me into

their classes so that their students, if willing, could complete my surveys. The CS 113

(Java), CS 141 (Visual Basic), and CS 103 (C++) students represented a substantial

proportion of their respective classes. The CS 114 (Java), CS 132 (C++), CS 172 (C++),

and SE 103 (C++) represented a much smaller proportion of their respective classes.

All of the students who participated in the study were enrolled in courses that

required prior programming experience. Although the prerequisites are not always

enforced, it was clear from the student responses to the demographic survey that most

had programmed before. Languages previously studied included Alice, Basic, C, C++,

Java, JavaScript, and Visual Basic.

The sixty-one students who completed both parts of the study represented a

variety of majors. Fourteen were Computer Science (CS) majors. Twenty-one were

Management Information Systems (MIS) majors; two of the MIS majors had second

majors in Marketing (MKT) and Radio, Television, and Film (RTF), respectively. Nine

were Electrical and Computer Engineering (ECE) majors. Ten were Mechanical

Engineering (ME) majors. Three were Mathematics (MATH) majors; two of the MATH

www.manaraa.com

60

majors had second majors in Physics (PHYS) and Economics (ECON), respectively. Of

the three remaining students, one was a Software Engineering (SE) major, one was a

Liberal Arts (LA) major, and one was non-matriculated (N/A). Interestingly, seven of the

eight students who completed only the first part of the study were MIS majors; the eighth

was a CS major.

Additional information about the research study participants, such as the fact that

only seven out of sixty-one were female, can be viewed in Appendix L.

8.3 Task

Sixty-one of the original sixty-nine participants completed the study, which

consisted of two sessions. The first session was scheduled near the beginning of the

term, while the second session was scheduled near the end of the term. During the first

session, each student was asked to complete three surveys: a demographic survey to

obtain information about his background (Appendix M); an attitude survey to gain insight

into his attitude toward computer science and programming (Appendix N); and a

computer concepts survey to assess his knowledge of computer programming concepts

(Appendix O). During the second session, each student was asked once again to

complete the attitude and computer concepts surveys. Most of the students completed

each session in an hour or less. The sessions were not timed. Each student who

completed the study received a stipend of $15.00.

8.4 Results

Because of the dual nature of the research study, the presentation, analysis, and

discussion of the data gathered is divided into two parts. The first part will focus on the

www.manaraa.com

61

assessment tool. The second part will explore how useful the tool was in assessing

student performance.

8.5 Assessment Tool

8.5.1 Scoring Procedure

The scoring procedure for the version of the computer concepts survey used in the

pilot study employed the algorithm used to compute a raw score on the multiple-choice

portions of the SAT. This algorithm assigns a " 1 " for each correct response, a "-

l/(number of incorrect responses)" for each incorrect response, and a "0" for each

nonresponse. However, after reviewing additional literature on constructing and scoring

multiple-choice tests (DeAyala, Plake, and Impara, 2001; Ebel and Frisbie, 1991;

Haladyna, 2004), it seemed more appropriate to use an algorithm that assigns a " 1 " for

each correct response, a "0" for each incorrect response, and a "0.5" for each

nonresponse. In a study that investigated the effect of omitted responses on an

examinee's ability estimate, DeAyala, Plake, and Impara (2001) found that substituting

0.5 for omitted responses yielded ability estimates nearly as accurate as those that used

complete data. They also concluded that treating blank responses as incorrect is probably

the worst practice.

8.5.2 Item Response Pattern Analysis

Multiple techniques exist for evaluating the effectiveness of assessment tools.

One approach for evaluating the quality of tools composed of multiple-choice questions

is to study the item (question) response patterns. Every multiple-choice question exhibits

a response pattern that is either desirable or undesirable. High scoring students tend to

choose correct answers, while low scoring students tend to choose incorrect answers.

www.manaraa.com

62

Research has revealed a pattern to the relationship between distracter (incorrect answer)

choice and overall test score (Haladyna, 2004). Consequently, it is important to examine

both correct and incorrect answer choices. Our starting point for evaluating the

effectiveness of the computer concepts assessment tool constructed for this research is to

determine:

• The proportion of students who answered each question.

• The proportion of students who answered each question correctly.

• The efficiency of the distracters.

Figure 8-1 shows the results of this analysis for session one of the study. Figure 8-2

shows the results for session two. Only the responses for the 61 students who completed

both parts of the study were used in the analysis.

Response %

A

B

C

D

E

Total

Q l Q 2 Q 3
0.611 0.02 0.02

0.10 0.05

0.1S| , 0.80

0.10 0.13

0.74

0.20

0.03

Q4 JQS |Q6
0.30) 0.10 0.20

0.05 0.13 0.31

0.08 0.36 0.02

0.541 0.3fi| 0.46

Q7

0.05

0.03

0.67
0.23

Q 8
0.13

0.61

0.10

Q9 I q i o I q i i

' :'0.49] 0.18|.{: V0.39

0.15 0.05 0.15

0.13 0.03 0.28

Q12

0.25

• '. . . 0.23
0.31

0.07 0.111: : 0.691 0.03 0.11

0.9S 1.00 0.98 0.97 0.95 0.98 0.98 0.90 0.89 0.95 0.35 0.90

Response %

A

B

C

D

E

Total

Q13 |Q14

0.39 0.39

0.10 0.05

0.05

0.43

0.33

0.10

Q1S

0.31

0.13

0.23

0.25

Q16 |Q17 | q i 8 |Q19

0.18

0.31

0.15

0.25

0.21 0.28 0.28

0.36| 0.07 O.H

0.2S 0.31 0.25

Q20

0.52

0.18

0.03

0.07| 0.23| 0.1S| 0.18

Q21 |Q22 |Q23 |Q24

0.16 0.11

0.3»| 0.25

0.18 0.21

0.071 0.30

0.15 0.08

0.25 0.20

•:'• 0.381 .";;' 0.46

0.11 0.13

0.97 0.87 0.92 0.89 0.92 0.89 0.82 0.92 0.80 0.87 0.89 0.87

Correct Response:

Figure 8-1. Proportion of students who chose each question response for session one (pre-test).

www.manaraa.com

63

Response %

A

B

C

D

E

Total

QJ JQ2 Q 3

0.69] 0.05 0.10

0.15 0.16

0.08| •"•: 0.69

0.03 0.10

0.70

0.13

0.05

Q 4 |CJ5 |Q6
0.30| 0.11 0.23

0.05 0.23 0.25

0.21 0.30 0.11

0.4*| • 0.34J 0.39

Q7
0.10

0.07

0.59

0.25

qa
0.10

0.70

0.15

q9 Iqio Iqu
0.5l | 0.15[0.48

0.13 0.07 0.18

0.20 0.18 0.28

q i 2

0.33

0.20

0.30

0.05 0.10| j :
 : 0.561 0.02 0.11

0.95: 1.00 0.98 1.00 0.98 0.93 1.00 1.00 0.93 0.95 0.95 0.93

Response %

A

B

C

D

E

Total

Q I » | q i 4

0.44 0.49

0.11

0.05

•!' 0.38

0.03

.;••. o.3i
0.08

q i s

0.36

0.16

0.23

0.18

Q16 |Q17 | q i 8 | q i 9

0.25

0.31

0.26

0.11

0.23 0.23 0.38

0.26J 0.30 0.11

0.34 0.13 0.16

qzo
0.41

0.20

0.13

0.131 0.2S| , ::0,20j 0.16

q 2 1 |Q22 | q 2 3 | q24

0.23: 0.18

: 0.3«| 0.16

0.11 0.30

0.l4::;-V 6.33

0.21 0.03

0.26 0.23

.''0.39|i-*:' 10.39

0.07: 0.21

0.98 0.92 0.93 0.93 0.97 0.93 0.85 0.90 0.87 0.97 0.93 0.87

Correct Response:

Figure 8-2. Proportion of students who chose each question response for session two (post-test).

The rows labeled "Total" show the proportion of students who answered each

question on the test for each of the two sessions. The rose-highlighted cells show the

proportion of students who answered each question correctly. This value is referred to as

the item facility (Elvin, 2004) or p value (Haladyna, 2004). The remaining cells show the

proportion of students who chose distracters (incorrect responses). Although in some

cases the proportions are low, it is important to note that all possible responses, correct as

well as incorrect, were selected at least once. Response E was an option only for

Question 25, which asked students to rate the difficulty level of the test using a Likert-

type scale.

A more detailed breakdown of student responses that considers test score

distribution provides additional information about response patterns for correct as well as

incorrect answers. Student records were arranged in descending order by score, then

divided into four approximately equal-sized groups. For each group, the proportion of

students who chose each of the four possible responses was calculated. Figure 8-3

www.manaraa.com

64

displays the breakdown for a subset of questions and corresponding responses for session

two. These particular questions were chosen as exemplars because their response

patterns represent a variety of patterns typically seen in multiple-choice questions with

four answer choices. (See Appendices D and E for the breakdowns for all 24 questions

and their responses for both sessions.) For each question, the proportion of correct

responses should vary directly with the students' scores (Haladyna, 2004). For each of

the question's distracters, the proportion of responses should vary inversely. As we shall

see shortly, however, this is not necessarily the case.

Quartiles per response

Response %
A

B

C

D

Total

Q5

0.03

0.02

0.03

0.03

0.05

0.05

0.07

0.07

0.00

0.07

0.08

0.15

0.16

0.11

0.05

0.02

0.9S

Q 9 s
ill

0.00

0.03

0.05

0.05

0.00

0.05

0.05

0.10

0.02

0.00

0.05

0.03

0.93

Q19

0.16

0.10

0.03

0.08

0.02

0.02

0.03

0.05

0.02

0.03

0.05

0.07

0.03

0.07

O.OS

0.02

0.85

Q 20 Q 23

0.20

0.11

0.07

0.03

0.00

0.02

O.OS

0.10

0.00

0.03

0.03

0.07

0.05

0.03

0.03

0.05

0.90

0.00

0.05

0.07

0.10

0.02

0.03

0.07

0.10

0.21

0.08

0.08

0.02.

0.00

0.02

0.02

0.03

0.93

High score

Low score

Correct Response:

Figure 8=3. Proportion of session two students who chose each response for Questions 5 9 19 20
and 23, divided into four groups by score (high to low).

www.manaraa.com

65

Desirable response patterns for correct answers are exhibited by questions 5, 9,

20, and 23. For each of these questions, the proportion of correct answers decreases

overall as the students' scores decrease. Question 19, on the other hand, exhibits a

correct response pattern that makes no sense. According to the numbers, a greater

proportion of middle scoring students than high scoring students answered the question

correctly!

Desirable response patterns for incorrect answers are exhibited by Question 5,

option C; Question 9, options B and C; Question 19, options B and C; Question 20,

options B and C; and Question 23, options A and B. For each of these response options,

the proportion of incorrect answers increases overall as the students' scores decrease.

The remaining distracters exhibit response patterns that are either unchanging, or

changing in ways that may be difficult to interpret. For example, Question 5, options A

and B, and Question 20, option D, exhibit response patterns that are virtually unchanging

across score groups. In general, response patterns that display no orderly relation

between the distracter and students' test scores should be improved or replaced because

they are not working as intended.

Question 19, option A, on the other hand, exhibits a response pattern that more

closely resembles one desired for a correct answer than for an incorrect answer. Indeed,

more students chose option A than the correct answer, option D.

www.manaraa.com

66

Question 19 and its answer choices appear below:

19) Which of the following statements about recursion is always true?

a) A function that implements a recursive algorithm consists of two parts: a base case
and a recursive step.

b) Recursion, unlike iteration, can never occur infinitely.
c) Any programming problem that can be solved either recursively or iteratively can be

solved more efficiently using recursion.
d) Any programming problem that can be solved recursively can also be solved

iteratively.

One possible explanation for this behavior relates to the topic the question

addresses and an example frequently used to illustrate it. The topic is recursion; the

frequently-used example is the mathematical function factorial. Implemented

recursively, factorial has two parts: a base case that it solves by returning " 1 , " and a more

complex case that it solves by calling itself until it is called to solve the base case.

Question 19 asks "Which of the following statements about recursion is always true?"

Option A states "A function that implements a recursive algorithm consists of two parts:

a base case and a recursive step." It is not surprising that students whose experience with

recursion is limited to simple examples such as factorial selected this response. In

retrospect, the question turned out to be too difficult for the students, as subsequent

analyses will show.

The above tabular techniques provide a glimpse into desirable and undesirable

test question response patterns. However, in order to formally evaluate test question

performance, statistical techniques are required.

www.manaraa.com

67

8.5.3 Item Discrimination Analysis

The next step is to carry out item (question) discrimination analysis to formally

evaluate the overall performance of the computer concepts assessment tool as well as the

performance of the individual questions of which it is composed (Ebel and Frisbie, 1991;

Elvin, 2004; Haladyna, 2004). Unlike the above analyses, this process requires using the

spreadsheets for the pre-test and post-test in which the students' letter responses have

been converted to numbers (as described in the scoring procedure). The steps are as

follows:

1) Sort the students' records in descending order by score.

2) Compute the proportion of students who answered each question correctly. As

mentioned earlier, this value is the item facility, or p value.

3) Identify upper and lower groups separately. The upper group is the highest scoring

27% of the whole group. The lower group is the lowest scoring 27% of the whole

group.

4) For each question, count the number of students in the upper group who chose the

correct response. Divide this number by the size of the group. This value is the item

facility for the upper group.

5) Compute the item facility for the lower group by following steps similar to those in

step 4.

6) Subtract the item facility for the lower group from the item facility for the upper

group. This value is the item discrimination (also referred to as item-discrimination

index or index of discrimination).

www.manaraa.com

68

7) For each question, add the counts for the correct number of responses for the upper

and lower groups. Divide this sum by the total number of students in the two groups.

This value is the estimated index of item difficulty.

8) Compute the average score and standard deviation of the test. These values can be

easily calculated using functions built into spreadsheet programs such as Microsoft

Excel.

9) Determine the reliability of the test. Reliability is calculated here using one of two

widely accepted formulas developed by Kuder and Richardson (1937), K-R21.

Formula K-R21 is:

k
r =

x(k-x)
ks2

where:

r = reliability coefficient

k = number of test items

X = mean test score

s = standard deviation of test scores

K-R21 provides a conservative estimate of a test's reliability. K-R20, Kuder and

Richardson's more complex formula for estimating reliability, cannot be used in this

case because it is not applicable to tests that employ weighted scoring.

www.manaraa.com

69

10) Estimate the standard error of measurement of the test. Standard error of

measurement is calculated using the following formula:

sE = sx -J^r

where:

sE = standard error of measurement

sx = standard deviation of test scores

r = reliability coefficient

The results of the item discrimination analysis for the pre-test and post-test appear

in Appendices F and G, respectively. Only the scores for the 61 students who completed

both parts of the study were used in the calculations. Figure 8-4 below displays the

results for a subset of questions that, in general, performed reasonably well on both the

pre-test and post-test. The item facility (total group, top 27%, bottom 27%), item

discrimination, and estimated index of item difficulty are clearly labeled.

It is important to note that while index of item difficulty is sometimes measured

by calculating the proportion of test-takers who answer a question incorrectly, this

researcher adopts the approach of Ebel and Frisbie (1991) who measure item difficulty by

calculating the proportion of test-takers who answer a question correctly. As a result,

higher values indicate easier questions and vice versa. Because the index of item

difficulty reflects the ability of a particular group of test-takers, and not just the content of

the question, it is more appropriately referred to as estimated index of item difficulty.

www.manaraa.com

70

Pre-test
Question Number

Item facility total

Item Facility Top

Item Facility Sottom

27%

Item Discrimination

Estimated index of
Item Difficulty

Q l

0.607

0.875

0 .3»

0.561

0.5*1

Q2

O.S0J

0-93S

0.750

0.844

Q 3

0.738

0.938

0.500

0.438

0.719

Q4

0.295

0.6SS

a.ooo

o.sas

0-344

Q5

0.361

0-625

0.188

0-438

0-406

QS

0.459

0.7SO

0.063

0.6X8

0.406

Q7

0.672

0.938

0-43S

osoo

0.6S3

Q8

0.607

0J75

0.438

0.4M

0.656

Q9

0-492

0.813

0.1SS

O.MS

O.SCO

Q10

o.sm

0.750

0.563

0.6S6

a n

0.393

0.563

0.125

0.4JS

0.344

Post-test
Question Number

Item Facility Total

Item Facility Top
27%

Item Facility Bottom
27%

Item Discrimination

Estimated Index of

Item Difficulty

Question Number

Question Category

Q l

0.6S9

0,375

0.4 3S

0.433

0.656

Q 2

0.6S9

1.000

0.500

0.500

0.750

Q 3

0.705

0.938

0.500

a«3s

0.719

Q 4

G.295

G.6SB

0.063

0.625

0.375

QS

0.344

0.625

0.063

0.S63

0.344

Q »

0.393

0.875

0.063

0.8H

0.469

Q7

0.590

0.93S

0.375

0.583

0.656

Q8

0.755

0.938

0.375

0.563

0.656

0 9

0.50S

0.S75

0.313

05«3

0.594

a io

0.5S7

0.813

O.50O

0.3H

0.656

Q U

0.475

0.750

0.1S8

0.563

0.469

Q l \<Xi |QJ

Sosics

Ct4 |CIS JQ6

Logical expiesstoat

Q7 la* |a»

COfizffiionok

cu«__jait___

Far hops

Index of Discrimination Scale:
Very gooo" 0.40 a.'KS up
Reasonably good ^•":'-,":';-;: 0.30 ;o 0.39

Marginal 1111111 0.20 to 0.29
Poor &H111111 Below 0.19

Figure 8-4. Session one (pre-test) and session two (post-test) item discrimination analysis for
questions 1 through 11.

The most important values to attend to here are those for item discrimination.

These values indicate how well questions discriminate between high and low scoring

students. Since the goal of an effectively functioning test question is to discriminate

between high and low scorers, it should go without saying that the higher these values are

the better. The chart at the bottom shows a scale that is normally suitable for evaluating

test question effectiveness based on item-discrimination indices (Ebel and Frisbie, 1991).

www.manaraa.com

71

Figure 8-4 shows nine questions that exhibit very good item-discrimination

indices for both the pre-test and the post-test: 1, 3 through 9, and 11. Questions 2 and 10,

on the other hand, performed poorly on the pre-test, but respectably on the post-test.

Questions that consistently perform poorly must be rejected or revised. Question 10's

reasonably good performance on the post-test indicates that it may still be subject to

improvement.

Figure 8-5 shows ten questions that exhibit a variety of changes in the item-

discrimination indices from the pre-test to the post-test. The item-discrimination indices

for Questions 13, 14, 15, and 24 are very good for the pre-test. Question 14, however,

exhibits only marginal performance for the post-test. The item-discrimination indices for

Questions 16, 21, and 22 are reasonably good for the pre-test and very good for the post-

test. The remaining three questions show significant improvement in performance

between the pre- and post-tests. Questions 18, 20, and 23 all performed poorly on the

pre-test. On the post-test, however, Question 18's performance was reasonably good,

while that of Questions 20 and 23 was very good.

www.manaraa.com

72

Pretest
Question Number

Item facility renal

Hem Facility Top

27%

Item Facility Bottom
2794

Item Discrimination

Estimated Index of

item Oilliculty

Q13

0.426

0.688

0,125

0.S6)

0.406

Q14

0.328

0.563

0,1.25

0.4 ia

0.344

q i s

031J

0,625

0.115

K.5O0

0375

Q16

0.14S

0.138

0.063

'••;•'• ;o.m

0.250

Q18

0.230

0,250

0.ISS

0.219

Q20

0.525

0.688

0 625

ins
0.656

Q21

0.393

0.563

0 250

ttMS

0.406

Q22 (

0.295

_ M 2 a

0.125

L l »

0.2SIJ

0J23

0,377

0,375

0,313

6.3*4

Q24

0.459

0,750

0.135

0.&M

o.»s

Post-test
Question Number

Item Facility Total

IteroFaciiltyTop
27%

Item facility Bottom
27%

Item Discrimination

Estimated index of
Item Difficulty

Question Number

Question Category

Q13

0.377

0.625

0.1SS

M M

0.406

Q14

0.311

0.438

01S8

%$§&&$&

0313

Q15

0.361

0,62*

048*

0.4*8

0.4C6

a is

0.262

0.750

0.0*1

o.tss

0.406

Q18

0,279

0.43B

P06I

' " oJi?5

0.250

Q »

0.410

0,813

0125

0.6SS

0.469

Q2I

0.377

0.750

0 250

0,500

S.S00

Q22

0,32*

0,813

0.063

O.Kct

0.4 J3

Q23

0.393

0.813

0 063

0J50

0.438

Q24

0,393

0,875

0 125

0.JM

O.SOO

Q13 |Q14

WMe kxtps

a is |QIS

Functions

q is QM {Q2t

Recursion

Q22 |C123 |Q24

Ctosses and objetts

instep of Discr iminat ion Scale:

Very good

Reasonably good

Margmal

PcOf

0,40 and uo
0,30 to 0.39

0.20 to 0,29

Below 0.19

Figure 8-5. Session one (pre-test) and session two (post-test) item discrimination analysis
for questions 13 through 16, 18, and 20 through 24.

Figure 8-6 shows the results of the item discrimination analysis for the remaining

three questions in the computer concepts survey. Basically, Questions 12, 17, and 19 all

performed poorly on both the pre-test and the post-test. However, Question 17's item-

discrimination index increased from 0.00 on the pre-test to 0.19 on the post-test, placing

it very close to the minimum cutoff for marginal performance (0.20). I would therefore

be inclined to include an improved version of this question in future versions of the test.

Questions 12 and 19, on the other hand, would have to be revised significantly or

www.manaraa.com

73

dropped. A negative item-discrimination index (e.g., Pre-test, Question 12) is

particularly bad because it indicates that more low scoring students got the question right

than high scoring students. A zero item-discrimination index (e.g., Post-test, Question

12) is almost as bad because it indicates that the question does not discriminate between

high and low scoring students.

Pre-test
Quest ion Number

I t e m Faculty Tota l

t t em Facil ity Top

27%

i t e m Facility B o t t o m

77%

i t em Discr iminat ion

r«.tim,itiMl Index of

Qu^^ t ion Number

Q tH^ t ton Category

Q «

0,230

0.188

Q.IU

ill
OJ2W

a «

Arr&y

« J 7

0.361

0.37S

0.375

0.17S

««
funcr^ofis

« W

O.ttO

0.313

0 . 1 »

0.219

Q 1 9

Recunxm

Post-test
Quest ion Number

item futility Total

I t em fac i l i t y t o p

i t e m Faf SHty Bo t t om

I tem Qiso i tn inAl lon

Est imated Index of

t |«nt DMHcuity

Quest ion Number

Quest ion Category

a i i

0-197

a.ns

0.12S

IB
0.125

a t /

0.262

0.J75

0 188

0.281

Q 1 9

O.I97

0.S8S

0.003

0.12S

Q l i art

fuKtksr.S

a»
ff«i£U'«,!i3^

Endex of Discrimination Scale:

Very good

ResiGAoib'y good

Marginal 111111
Poo* l i l l l l l^pl

G.ao *oS up

0>30to0.39

3,20 to 0.29

BeiawO.-iS

Figure 8-6. Session one (pre-test) and session two (post-test) item discrimination analysis for
questions 12, 17, and 19.

www.manaraa.com

74

To explain the variation in the item-discrimination indices, the way they are

calculated will be reviewed. Specifically, item-discrimination index is computed by

subtracting the item facility for the lower group from the item facility for the upper

group. (Recall that item facility is the proportion of students in a particular group who

answered each question correctly.) So, for example, if the performance of the upper

group on a specific question improved, while that of the lower group declined or stayed

the same, the item-discrimination index would increase. If, on the other hand, the

opposite occurred, the item-discrimination index would decrease. Factors influencing the

performance of the individual students who make up the different groups may include

learning, motivation, stress, fatigue, and so on.

In the event that the above discussion has led the reader to believe that a question

must perform well every time a test is administered, that is not the case. The purpose of

all the comparisons was to show how (and why) question performance can change for

better or worse from one administration of a test to the next. If, after repeated

administrations, a question performs reasonably well most of the time, it should be

retained. If, on the other hand, its performance is poor or inconsistent, it should be

revised or replaced. The whole point of item discrimination analysis is to determine

whether or not a test and the questions of which it is composed provide us with useful

information about student performance. A question that performs poorly or

inconsistently is useless because it provides us with no information.

Figures 8-7 and 8-8 below report reliability, average score, standard deviation,

and standard error of measurement statistics for the pre-test and post-test. A reliability

www.manaraa.com

75

coefficient of 0.60 or higher is considered sufficient for exploratory research; 0.70 or

higher is considered adequate; and 0.80 or higher is considered good (Garson, 2010).

Reliability and standard deviation are higher for the post-test, while average score and

standard error of measurement are lower. A decrease in average score accompanied by

an increase in reliability may seem "odd" until one considers the relationship between

reliability, variance, and item-discrimination index. Score variance (standard deviation

squared) is directly proportional to the square of the sum of the item-discrimination

indices (Ebel and Frisbie, 1991). The reader will recall from the above discussion that

the item-discrimination indices increased overall from the pre-test to the post-test.

Consequently, variance also increased. It is generally true that the greater the score

variance, the higher the reliability (Ebel and Frisbie, 1991).

Reliabi l i ty

Average Score

Standard Deviat ion

Standard Error of

Measurement

0.56S

11.402

3.626

2.382

Figure 8-7. Session one (pre-test) reliability, average score, standard deviation, and standard error of
measurement statistics for questions 1 through 24. Reliability is calculated using K-R21.

Reliabi l i ty

Average Score

Standard Deviat ion

Standard Error o f

Measurement

0.749

10.730

4.586

2.297

Rel iabi l i ty

Average Score

Standard Deviat ion

Standard Error o f

Measurement

0.786

10.230

4.682

2.166

Figure 8-8. Session two (post-test) reliability, average score, standard deviation, and standard error of
measurement statistics for questions 1 through 24 (left); and questions 1 through 24, minus
questions 12 and 19 (right). Reliability is calculated using K-R21.

www.manaraa.com

76

Figure 8-8 merits some additional discussion. As the caption indicates, the chart

on the left reports the reliability, average score, standard deviation, and standard error of

measurement values obtained when all 24 questions in the computer concepts survey are

included in the calculations. The chart on the right, however, reports the values obtained

when Questions 12 and 19 are excluded from the calculations. This was done to see what

impact dropping two of the worst performing questions on the survey would have on the

overall reliability of the test. Since dropping these questions also resulted in the two

lowest item discrimination values being excluded from the calculations, reliability rose,

as the discussion in the preceding paragraph suggested it would.

A student's observed score on a test consists of two components, a true score and

an error score (Ebel and Frisbie, 1991; Elvin, 2004; Garson, 2010). Since these scores

are not known, a method has been devised to estimate the standard deviation of the

hypothetical error scores. This estimated value is called the standard error of

measurement. It is calculated from the standard deviation and reliability coefficient of

the observed scores using the formula provided in step 10 of the procedure for item

discrimination analysis. The values for standard error of measurement and reliability are

inversely related: as standard error of measurement goes down, reliability goes up, and

vice versa. This is because reliability is the ratio of the true score to the observed (true +

error) score. Therefore, the smaller the error score, the closer the observed score will be

to the true score.

www.manaraa.com

77

The values displayed in Figures 8-7 and 8-8 exemplify the inverse relationship of

reliability and standard error of measurement. In all cases, an increase in reliability was

accompanied by a decrease in standard error of measurement.

As a second measure of the assessment tool's reliability, Cronbach 's alpha was

computed using PASW Statistics 18 (2010). Unlike K-R20, Cronbach's alpha can be

used to estimate reliability for tests that employ weighted scoring (Ebel and Frisbie,

1991). The formula is:

a = 1 - ^ r -
ifc-1 s2

where:

a = alpha coefficient

k = number of test items

Sj = variance of a single test item

Sj = sum of variances for all test items

s = variance of test scores

The figure below displays the results of the computations.

Cronbach's

Alpha

0.652

0.7S7

0.816

Reliability Statistics
Cronbach's

Alpha Based on

Standardized

I tems

0.646

0.779

0.815

N of I tems

24

24

22

Comment

Session 1 values: Questions 1-24

Session 2 vafoss: Questions 1-24

Session 2 values: Questions 1 -24,

minus questions 12 and 19

Figure 8-9. Cronbach's alpha values for session one (pre-test) and session two (post-test).

Z

www.manaraa.com

78

Interestingly, the Cronbach's alpha values are all higher than the K-R21 reliability values.

K-R21, however, may underestimate the K-R20 reliability coefficient depending on the

average scores of the individual test items. Since the formulas for Cronbach's alpha and

K-R20 are similar, the reliability estimates generated by each will also be similar.

Section 4.5.4 discussed steps already taken to demonstrate the "content validity"

of the computer concepts assessment tool (Sections 8.5.2, 8.5.3), as well as steps in

progress to demonstrate its "construct validity." Several different types of evidence

provide support for content validity: intrinsic characteristics, study of question responses,

expert review. Content validity is intrinsic, since the tool is based on the core concepts of

the Programming Fundamentals knowledge area defined by the 2008 ACM/DEEE

curricular guidelines (CS2008 Review Taskforce, 2008).

Haladyna (2004) makes a case for the importance of collecting evidence to

validate both test scores and the question responses aggregated to form them. Section

8.5.2 analyzed the patterns for correct responses and incorrect responses (distracters) to

gather evidence in support of question response validity. Analysis showed that all

possible responses, correct as well as incorrect, were selected at least once, the desired

result. Next, student records were arranged in descending order by score and divided into

quartiles to examine the relationship between answer choice and overall test score.

Ideally, the proportion of students choosing correct answers should be directly related to

their scores, while the proportion choosing distracters should be inversely related. The

desired relationship between correct responses and scores held for about 67% of the

questions for the pre-test and 75% of the questions for the post-test. Although I am

aware of no "magic number," this would seem to be a respectable showing. Between the

www.manaraa.com

79

pre-test and the post-test, at most 50% of the distracters exhibited the desired inverse

relationship between incorrect responses and scores, indicating that many of the

distracters need to be improved or replaced.

Section 8.5.3 analyzed the overall performance of the computer concepts

assessment tool as well as the performance of its individual questions to gather additional

evidence in support of question response validity. Analysis showed that the assessment

tool performed well overall at both the pre- and post-test administrations based on the

item (question) discrimination values for the individual questions. Specifically, item

discrimination ratings were either "very good" or "reasonably good" for 21 out of 24

questions.

Finally, I have obtained feedback on the computer concepts assessment tool from

several of the computer science faculty whose students participated in the study. Faculty

were asked to complete a review form (Appendix P) that asked them to: 1) answer the

question; 2) decide whether the question reflects fundamental programming concepts that

students should know after completing an introductory course in object-oriented

programming; 3) rate the quality of the question on a scale of "do not use again," "use

again with major changes," "use again with minor changes," or "use again as is."

Reviewers were encouraged to indicate how questions should be changed or why they

should not be used again, if appropriate. Feedback has been largely positive. One

reviewer indicated that 19 out of 24 questions reflected basic concepts and should be used

again "as is" or with "minor changes." A second reviewer responded similarly, but

specified different questions that should be changed or omitted.

www.manaraa.com

80

Construct validity is more difficult to demonstrate than content validity.

Exploratory factor analysis is a statistical technique that can be used to determine, based

on students' responses, whether the questions that make up an assessment tool group into

constructs the tool is intended to measure (Hoegh and Moskal, 2009). Preliminary factor

analysis extracted nine components. Since the last two components consisted of only one

question each, the factor analysis was re-run without those two questions. Seven

components were extracted, three of which were readily comprehensible. Questions 16,

20 , 23, and 24 loaded on a factor I labeled "methods and functions." Questions 2, 3, and

5 loaded on a factor I labeled "mathematical and logical expressions." Questions 7, 9,

and 11 loaded on a factor I labeled "control structures." Questions 4, 6, and 8 possibly

load on a "questions with conditions" factor, but that would overlap with the "control

structures" factor. Such overlap is not surprising, however, since control structures

contain conditions. Figure 8-10 shows the factors and their question loadings.

www.manaraa.com

81

Question

IQ16

Q24

|Q23

Q20

Q2

!Q 3

;Q5

;Q8

!Q4

:Q6

JQ11
!Q7

|Q9

Factor

Methods and
functions

733

.722

.721

J332

Mathematical
and logical
expressions

.850

.769

.593

Questions
with

conditions

.814

.542

.353

Control
structures

769

.674

.511

Figure 8-10. Factors representing the construct "understanding of fundamental programming
concepts," extracted through principal component analysis.

Ideally, all assessment tool questions should group into clearly defined factors that

represent the construct "understanding of fundamental programming concepts," but that

will have to be a matter for future work.

www.manaraa.com

82

8.6 Student Performance

8.6.1 Score Distribution Analysis

The figure below displays the score distributions for the 61 students who

completed both parts of the study. Both resemble normal distributions. The post-test

curve, however, is somewhat flatter than the pre-test curve. This is because the post-test

mean is slightly lower than the pre-test mean, and the post-test scores are more widely

distributed than the pre-test scores. Although inspection of the numeric data suggested a

normal spread, it seemed prudent to confirm this visually since many statistical tests

assume that data is normally distributed.

Session 1 (Pre-test) and Session 2 (Post-test) Scores

0.109

0.080

0.040

0.000

0.0 2.0 4.0

Pre-test:

Mean Score:

11.403

Standard

Deviation:

i. 626
N = 61

Post-test:

Mean Score:

10.730

Standard

j Deviation:

j 4.586

! ^ - 6 1

8.0 10.0 12.0 14.0 lrj.O 15.0 20.0 22.0 24,0

Score

Figure 8-11. Session one (pre-test) and session two (post-test) scores for the 61 students who
completed both parts of the study.

www.manaraa.com

83

It seemed wise to determine definitively whether or not the difference between the

pre-test and post-test means was significant. A within-subjects paired samples t-test

failed to reveal a statistically reliable difference between the mean pre-test (M = 11.40, s

= 3.63) and mean post-test (M = 10.73, s = 4.59) scores of the students: t(60) = 1.65, p -

.11, a = .05. The importance of this finding will become apparent in subsequent sections

which examine student performance by language group.

One of the goals of this research is to determine the possible impact of different

teaching languages (Java, Visual Basic, etc.) on students' learning of fundamental

programming concepts. Therefore, the next step is to analyze their performance based on

the language they were programming in when they participated in this study. The

programming languages of interest are Java, Visual Basic, and C++.

8.6.2 Mean Scores Analysis by Language Group

This section begins an exploration into the research question:

• Q 2: What effect does the teaching approach and/or programming language have on

students' ability to grasp fundamental programming concepts (e.g., assignment,

iteration, functional decomposition, program flow, etc.)?

and its accompanying hypothesis:

• H 2: Students taught to program using different approaches and/or languages will

exhibit different strengths and weaknesses with respect to their performance on

questions that test their knowledge of fundamental programming concepts.

Students were divided into groups based on the language they were studying in

the programming course they were taking when they participated in the study. The

students had been recruited from eight different programming classes: two teaching Java,

www.manaraa.com

84

two teaching Visual Basic, and four teaching C++. It seemed sensible to begin by

looking at overall performance before focusing attention on student performance with

respect to different programming concepts (e.g., conditionals, functions, etc.). The first

step was therefore to calculate and compare the mean scores of the three different

language groups (Java, Visual Basic, C++) on the pre-test and post-test.

Figure 8-11 displays the pre-test and post-test means broken down by language

category. The Java students and the C++ students appear to have performed similarly on

both the pre- and post-tests. The Visual Basic students, on the other hand, consistently

performed more poorly than the other two groups of students.

Session 1 (Pre-test) and Session 2 (Post-test) Means

14.000

12.000

10.000

8.000

6.000

4.000

2.000

0.000

Java Visual Basic

Language Category

12 9S2
12.500

9.818

H Pre-test

• Post-test

C t t

Figure 8-12. Mean scores for session one (pre-test) and session two (post-test) by language
group where: Java N = 13, Visual Basic N = 22, C++ N = 26, Total N = 61.

www.manaraa.com

85

To further investigate what Figure 8-11 suggests, statistical analysis was carried

out to test whether or not language of instruction affects student performance. A one-

factor, within-subjects analysis of variance (ANOVA) was performed to test if any of the

language category means were significantly different. A conservative post hoc test, the

Tukey test, was also used to make pair-wise comparisons among the means.

The tests of between-subjects effects for the one-factor, within-subjects analysis

of variance (ANOVA) revealed a reliable effect of language category on the repeated

measure, score: F(2, 58) = 8.58, p < 0.01, MSerror = 23.23, a = 0.05. Partial eta squared =

0.23, which is considered a large effect (Kinnear and Gray, 2010). The Tukey test was

used next to determine which pairs of means were significantly different.

The Tukey test revealed significant differences between two of the three pairs of

means at the 0.05 cc-level. The test confirmed differences between the Visual Basic mean

and the means for Java and C++; the difference between the Java and C++ means is

insignificant. The p-values for the differences between the Visual Basic mean and those

for Java and C++ are 0.02 and less than 0.01, respectively; the p-value for the difference

between the Java and C++ means is 1.00. The differences between the Visual Basic

mean and those for Java and C++ are 3.43 and 3.91, respectively; the difference between

the Java and C++ means is 0.48.

The results of the analysis presented above confirm that language of instruction

does indeed affect overall student performance in introductory programming courses. It

may be that highly structured languages like Java and C++ promote better overall

learning than less structured languages like Visual Basic. It may also be that the interface

design aspect of Visual Basic programming detracts from student learning of

www.manaraa.com

86

fundamental concepts. I have learned through personal experience teaching introductory

programming using Visual Basic that students seem to like the graphical aspect.

However, it may be that the time spent learning to create graphical user interfaces (GUIs)

would be better spent learning the fundamental programming constructs needed to

implement them.

Figure 8-11 also showed a decrease in mean scores for the Java and Visual Basic

students and an increase in mean scores for the C++ students from the pre-test to the

post-test. Although not all changes appeared to be significant, a test to determine the

difference (if any) between the pre- and post-test means was indicated. A within-subjects

paired samples Mest was performed to test if the pre-test and post-test means within each

of the different language groups (Java, Visual Basic, C++) were significantly different.

The paired samples Mest revealed a significant difference between the pre-test

and post-test means for only one of the three language groups. The /-test confirmed a

difference between the pre- and post-test means for the Visual Basic students; the

difference between the pre- and post-test means for the Java and C++ students is

insignificant. Specifically, a paired samples Mest revealed a statistically reliable

difference between the mean pre-test (M - 9.82, s = 3.06) and post-test (M = 7.52, s =

2.12) scores of the Visual Basic students: f(21) = 3.29, p < 0.01, a = 0.05. However, the

paired samples test failed to reveal a statistically reliable difference between the mean

pre-test (M = 12.50, s = 4.03) and post-test (M = 11.69, s = 5.62) scores of the Java

students: t(\2) = 0.92, p = 0.37, a = 0.05. The test similarly failed to reveal a statistically

www.manaraa.com

87

reliable difference between the mean pre-test (M = 12.19, s = 3.52) and post-test (M =

12.96, s = 4.10) scores of the C++ students: ?(25) = -1.59, p = 0.12, a = 0.05.

As the above analysis confirmed, the performance of the Java and C++ students

remained fairly constant over the course of the research study, while the performance of

the Visual Basic students declined. One possible explanation for this result is the

approach used to teach the course. The prerequisite course introduced the students to

Visual Basic programming using the typical lecture/lab approach in which they were

assessed at regular intervals to reinforce their learning. The follow-up course - the

course the students were taking when they participated in this study - used a project-

based approach. According to the course syllabus, 90% of the student's grade was based

on the design and implementation of a small-scale enterprise system. Although the

project was intended to cover all basic and object-oriented programming concepts, it may

be that a semester-long project was less effective at reinforcing student learning of

fundamental concepts than exams, quizzes, and lab assignments given regularly

throughout the course.

Examination of how students responded to different questions on the attitude

survey, particularly those addressing the usefulness of programming in their future work,

may provide some insight into this result.

www.manaraa.com

88

8.6.3 Topic Area Analysis by Language Group

To explore the impact of language of instruction on student performance with

respect to different programming concepts, questions were grouped into the categories

used during the item discrimination analysis (basics, logical expressions, conditionals,

and so forth). For each student, a score was computed for each question category by

adding the scores of the questions that made up the category. (The maximum score for

each category is equal to the number of questions in the category: for example, " 3 " for

"basics" and " 3 " for "conditionals.") The mean scores for the question categories were

calculated for the pre-test and the post-test. One-factor, within-subjects analysis of

variance (ANOVA) tests were then performed to determine if language of instruction

affected student performance on the fundamental programming concepts represented by

the different question categories.

Figures 8-12 and 8-13 display the pre- and post-test means for the two question

categories on which language of instruction had a significant effect, "basics" and "logical

expressions."

www.manaraa.com

89

Pre-and Post-test Means for "Basics1

Questions
3.000

2.500

2.000

1.S00

1.000

0.500

0.000

-2^308-

Java

1.682

Visual Basic

Language Category

2.462.
2.615

i Pre-test

I Post-test

C++

Figure 8-13. Mean "basics" scores for pre-test and post-test by language group where:
Java N = 13, Visual Basic N = 22, C++ N = 26, Total N = 61.

Pre- and Post-test Means for "Logical
Expressions" Questions

3.000

2.500

2.000

1.500

1.000

0.500

0.000

1.3851.385

Java

0.727

Visual Basic

Language Category

-1-T30S-
1.385

C++

I Pre-test

I P'-KNt"';'

Figure 8-14. Mean "logical expressions" scores for pre-test and post-test by language group
where: Java N = 13, Visual Basic N = 22, C++ N = 26, Total N = 61.

www.manaraa.com

90

The tests of between-subjects effects for the one-factor, within-subjects analysis

of variance (ANOVA) revealed a reliable effect of language category on the repeated

measure, "basics" score: F(2, 58) = 16.75, p < 0.01, MSerr0r = 0.72, a = 0.05. Partial eta

squared = 0.37, which is considered a large effect (Kinnear and Gray, 2010). The Tukey

test revealed significant differences between the Visual Basic mean and the means for

Java and C++ at the 0.05 a-level; the difference between the Java and C++ means is

insignificant. The p-values for the differences between the Visual Basic mean and those

for Java and C++ are less than 0.01 and less than 0.01, respectively; the p-value for the

difference between the Java and C++ means is 0.14. The differences between the Visual

Basic mean and those for Java and C++ are 0.69 and 0.99, respectively; the difference

between the Java and C++ means is 0.31.

The tests of between-subjects effects for the one-factor, within-subjects analysis

of variance (ANOVA) also revealed a reliable effect of language category on the repeated

measure, "logical expressions" score: F(2, 58) = 5.31, p = 0.01, MSerror = 1.66, a = 0.05.

Partial eta squared = 0.16, which is considered a large effect (Kinnear and Gray, 2010).

The Tukey test once again revealed significant differences between the Visual Basic

mean and the means for Java and C++ at the 0.05 a-level; the difference between the

Java and C++ means is insignificant. The p-values for the differences between the Visual

Basic mean and those for Java and C++ are 0.01 and 0.01, respectively; the p-value for

the difference between the Java and C++ means is 0.90. The differences between the

Visual Basic mean and those for Java and C++ are 0.82 and 0.78, respectively; the

difference between the Java and C++ means is 0.04.

www.manaraa.com

91

These results are particularly disturbing, since assignment, mathematical

operations, and logical expressions are fundamental constructs upon which all other

programming constructs are based. Without a firm grasp of the basics, a student cannot

begin to understand conditionals, loops, functions, classes, and so forth. Unfortunately, it

is almost impossible to build a computer program that does anything useful without

employing these more advanced structures.

The remainder of this section explores the research question:

• Q 3: What effect does the teaching approach and/or programming language have on

students' ability to grasp specific object-oriented programming concepts (e.g., class

creation, method invocation, object instantiation, etc.)?

and its accompanying hypothesis:

• H 3: Students taught to program using the "objects-first/objects-early" approach will

perform better on problems that test their knowledge of object orientation than

students taught to program using the "programming-first" approach.

Figure 8-14 displays the pre- and post-test means for the "classes and objects"

question category.

www.manaraa.com

92

Pre- and Post-test Means for "Classes &

w J-UUU -

£ 2.500 -

X 2.000 -

o
°» 1.500 -
in
if

g 1.000 -

2 0.500 -
AS

2
0.000

Objects" Questions

1,538
. . . , -T T I O 1.385

1 .Ml - j - 1 " 1 3

: • Pre-test
3

• Post-test

:.tl .J
Jav/a Visual Basic C++

Language Category

Figure 8-15. Mean "classes and objects" scores for pre-test and post-test by language group
where: Java N = 13, Visual Basic N = 22, C++ N = 26, Total N = 61.

A one-factor, within-subjects analysis of variance (ANOVA) was performed to

determine if language of instruction affected student performance on the "classes and

objects" questions. The tests of between-subjects effects for the one-factor, within-

subjects ANOVA failed to reveal a reliable effect of language category on the repeated

measure, "classes and objects" score: F(2, 58) = 0.98, p = 0.38, MSerror - 1.76, a = 0.05.

Figure 8-14 showed a decrease in the mean "classes and objects" scores for the

Visual Basic students and an increase in the mean "classes and objects" scores for the

Java and C++ students. To determine if the pre- and post-test "classes and objects"

means within any of the language groups were significantly different, within-subjects

paired samples Mests were performed. The results were only significant for the C++ and

Visual Basic students:

www.manaraa.com

93

• C++:

D A paired samples /-test revealed a statistically reliable difference between the

mean pre-test (M = 0.92, s = 1.13) and post-test (M = 1.39, s = 1.30) "classes and

objects" scores of the C++ students: /(25) = -2.74, p = 0.01, a = 0.05.

• Visual Basic:

D A paired samples /-test revealed a statistically reliable difference between the

mean pre-test (M = 1.32, s = 1.17) and post-test (M = 0.55, s = 0.60) "classes and

objects" scores of the Visual Basic students: /(21) - 2.94, p = 0.01, a = 0.05.

The one-factor, within-subjects ANOVA failed to show that language of

instruction affects student performance on questions addressing the object-oriented

concepts "classes and objects". However, the /-tests demonstrated that there were

performance differences within two of the three language groups. Although nothing

definitive can be said about the impact of teaching approach and/or programming

language on students' ability to grasp object-oriented concepts, it is worth noting that, of

the three groups of students, the Java students performed the most consistently on the

"classes and objects" questions throughout the study. (The mean pre-test "classes and

objects" scores for the Java, Visual Basic, and C++ students are 1.23, 1.32, and 0.92,

respectively; the mean post-test scores are 1.54, 0.55, and 1.39, respectively.) Members

of the Rowan Computer Science faculty use BlueJ, a novice programming environment

that supports the "objects-first" approach, to introduce students to Java programming. It

may be that being introduced to Java using this approach has affected the students'

performance with respect to the "classes and objects" questions.

www.manaraa.com

94

8.6.4 Code-Completion Analysis by Language Group

This final section explores the research question:

• Q 4: What effect does the teaching approach and/or programming language have on

students' ability to select the correct code to complete the solution to a programming

problem when provided with multiple options?

and its accompanying hypothesis:

• H 4: Students taught to program using highly structured languages will perform better

on code-completion problems than students taught to program using less structured

languages.

Figure 8-15 displays the pre- and post-test means for the "code-completion"

question category.

Pre- and Post-test Means for "Code-
Completion" Questions

4.000
Oi

g 3.500
t / i

=c 3.000
o
a 2.500
a.

1 2.000

•S l.boo -
o
u
i . 1.000
o

3.615

3-15*3X177

S u s u u

s
Jav3 Visual Basic C++

language Category

a Pre-tes!

• Post-test

Figure 8-16. Mean "code-completion" scores for pre-test and post-test by language group
where: Java N = 13, Visual Basic N = 22, C++ N = 26, Total N = 61.

www.manaraa.com

95

A one-factor, within-subjects analysis of variance (ANOVA) was performed to

determine if language of instruction affected student performance on the "code-

completion" questions. The tests of between-subjects effects for the one-factor, within-

subjects ANOVA revealed a reliable effect of language category on the repeated

measure, "code-completion" score: F(2, 58) = 3.60, p = 0.03, MSerror = 4.07, a = 0.05.

Partial eta squared = 0.11, which is considered a medium effect (Kinnear and Gray,

2010). The Tukey test revealed a significant difference between the Visual Basic mean

and the C++ mean at the 0.05 cc-level; the difference between the Java mean and the

means for Visual Basic and C++ is insignificant. The p-value for the difference between

the Visual Basic and C++ means is 0.01; thep-values for the differences between the

Java mean and those for Visual Basic and C++ are 0.09 and 0.66, respectively. The

difference between the Visual Basic and C++ means is 1.08; the differences between the

Java mean and those for Visual Basic and C++ are 0.87 and 0.21, respectively.

Poor performance on "code-completion" questions could be indicative of poor

performance on "code-writing" questions. Although the purpose of a tool such as the

computer concepts inventory is to provide an objective measure of student performance,

that does not preclude the use of subjective measurement tools when deemed necessary.

In order to determine if students can program effectively in their language of study, they

must be asked to write (or type) code. The "forgiving" nature of Visual Basic in

combination with its emphasis on interface design may detract from student learning of

basic programming skills.

www.manaraa.com

96

CHAPTER 9: DISCUSSION

9.1 Importance of Computer Science Education Research

Numerous authors have written about the difficulties novices experience in

learning to program. Theories have been put forth as to why this is so and solutions

proposed to remedy the situation. Several decades of research have yielded no definitive

answers, and the number of students choosing to go into computer and information

science has continued to drop. According to the Computing Research Association

(CRA), however, enrollment in American computer science programs during the 2007-

2008 academic year increased for the first time in six years (Zweben, 2009). These

findings suggest that it would be in the best interests of the computer and information

science community to actively pursue research that encourages this trend.

The research presented here was motivated by an interest in improving practices

in computer science education in general and improving my own practices as a computer

science educator in particular. Its purpose was to develop an instrument to assess student

learning of fundamental and object-oriented programming concepts, and to use that

instrument to investigate the impact of different languages and teaching approaches on

students' ability to learn those concepts.

This discussion proceeds by examining the performance of the assessment

instrument itself (Research Question 1), followed by explorations into the findings the

instrument yielded (Research Questions 2, 3, and 4). The remaining sections discuss

implications of the findings for computer science education and directions for future

work.

www.manaraa.com

97

9.2 Assessment Instrument Performance

• Research Question 1: In a field like computer science where there are educational

guidelines but no actual standards, is it possible to create a tool to assess student

knowledge of fundamental and object-oriented programming (OO) concepts that

is sufficiently "generic" to be adopted for general use?

The computer concepts assessment tool performed better in its first trial than I had

dared to hope. The tool was field-tested at Drexel and Rowan Universities during the

2009-2010 academic year. Sixty-one students enrolled in a variety of freshman level

programming courses participated in the two-part study.

Analysis of the data gathered showed that the assessment tool performed

reasonably well at both the pre-test and post-test administrations. Reliability estimates

calculated using K-R21 (Kuder and Richardson, 1937) and Cronbach's Alpha (Ebel and

Frisbie, 1991) yielded values ranging from 0.57 (pre-test) to 0.75 (post-test), and 0.65

(pre-test) to 0.79 (post-test), respectively. A reliability coefficient of 0.60 or higher is

sufficient for exploratory research; 0.70 or higher is adequate; and 0.80 or higher is good

(Garson, 2010). Reliability was estimated separately for the pre-test and post-test

because of the diverse backgrounds of the student participants. Analysis of the

demographic surveys indicated that some of the students had not been exposed to all of

the basic and OO programming concepts before taking the pre-test. By the time they

took the post-test, they would have been introduced to all of the concepts.

Reliability is a necessary but not sufficient condition to ensure the validity of an

assessment tool. Consequently, evidence was gathered to demonstrate the two types of

validity most appropriate for this research, content validity and construct validity.

www.manaraa.com

98

Different types of evidence provided support for content validity: intrinsic

characteristics, study of question responses, expert review. Content validity is intrinsic,

since the tool is based on the core concepts of the Programming Fundamentals

knowledge area defined by the 2008 ACM/IEEE curricular guidelines (CS2008 Review

Taskforce, 2008).

Haladyna (2004) stresses the importance of collecting evidence to validate both

test scores and the question responses aggregated to form them. Section 8.5.2 analyzed

the patterns for correct responses and incorrect responses (distracters) to gather evidence

in support of question response validity. Analysis showed that all possible responses,

correct as well as incorrect, were selected at least once, the desired result. Next, student

records were arranged in descending order by score and divided into quartiles to examine

the relationship between answer choice and overall test score. Ideally, the proportion of

students choosing correct answers should be directly related to their scores, while the

proportion choosing distracters should be inversely related. The desired relationship

between correct responses and scores held for 67% of the questions for the pre-test and

75% of the questions for the post-test, which is a respectable result. Between the pre-test

and the post-test, at most 50% of the distracters exhibited the desired inverse relationship

between incorrect responses and scores, indicating that many of the distracters need to be

improved or replaced.

Section 8.5.3 analyzed the overall performance of the computer concepts

assessment tool as well as the performance of its individual questions to gather additional

evidence in support of question response validity. Analysis showed that the assessment

tool performed well overall at both the pre- and post-test administrations based on the

www.manaraa.com

99

item (question) discrimination values for the individual questions. Specifically, item

discrimination ratings were either "very good" or "reasonably good" for 21 out of 24

questions. The 3 questions that performed poorly will have to be replaced or revised.

Feedback from Computer Science (CS) faculty who have reviewed the assessment

tool provide additional support for its validity. Several CS faculty whose students

participated in the study were asked to complete a review form that asked them to: 1)

answer the question; 2) decide whether the question reflects fundamental programming

concepts that students should know after completing an introductory course in object-

oriented programming; 3) rate the quality of the question on a scale of "do not use again,"

"use again with major changes," "use again with minor changes," or "use again as is."

Reviewers were encouraged to indicate how questions should be changed or why they

should not be used again, if appropriate. Feedback has been largely positive. One

reviewer indicated that 19 out of 24 questions reflected basic concepts and should be used

again "as is" or with "minor changes." A second reviewer responded similarly, but

specified different questions that should be changed or omitted.

Evidence providing support for construct validity is still being gathered.

Exploratory factor analysis is a statistical technique that can be used to determine, based

on students' responses, whether the questions that make up an assessment tool group into

constructs the tool is intended to measure (Hoegh and Moskal, 2009). Preliminary factor

analysis extracted seven components, three of which were readily comprehensible. These

three factors were labeled "methods and functions," "mathematical and logical

expressions," and "control structures." A possible fourth factor that overlapped with the

"control structures" factor was labeled "questions with conditions." Such overlap is not

www.manaraa.com

surprising, however, since control structures contain conditions. Ideally, all assessment

tool questions should group into clearly defined factors that represent the construct

"understanding of fundamental programming concepts," but that is a matter for future

work.

9.3 Student Performance

• Research Question 2: What effect does the teaching approach and/or programming

language have on students' ability to grasp fundamental programming concepts

(e.g., assignment, iteration, functional decomposition, program flow, etc.)?

• Research Question 3: What effect does the teaching approach and/or programming

language have on students' ability to grasp specific object-oriented programming

concepts (e.g., class creation, method invocation, object instantiation, etc.)?

• Research Question 4: What effect does the teaching approach and/or programming

language have on students' ability to select the correct code to complete the

solution to a programming problem when provided with multiple options?

When students are given a test such as the computer concepts inventory at the

beginning of a course and again at the end of the course, the scores are generally

expected to go up. When they do not, one needs to ask why? Overall, the mean post-test

score (M = 10.73, s = 4.59) was slightly lower than the mean pre-test score (M = 11.40, s

= 3.63), but the difference was not significant at the .05 a-level. However, when the

students were divided into groups based on the language they were studying in the

programming course they were taking, the situation got more interesting.

The students had been recruited from eight different programming classes: two

instructing Java, two instructing Visual Basic, and four instructing C++. Students were

www.manaraa.com

101

divided into a Java group, a Visual Basic group, and a C++ group. Pre-test and post-test

means were calculated for each of the language groups and examined graphically. The

Java students and the C++ students appeared to have performed similarly on both the pre-

and post-tests. The Visual Basic students, however, performed worse than the Java and

C++ students on both tests. Statistical analysis was therefore carried out to test whether

or not language of instruction affects student performance. The one-factor, within-

subjects analysis of variance (ANOVA) revealed a reliable effect of language category on

the repeated measure, score: F(2, 58) = 8.58, p < 0.01, MSerror = 23.23, a = 0.05. Partial

eta squared = 0.23, which is considered a large effect (Kinnear and Gray, 2010). These

results suggest that language of instruction does indeed affect overall student

performance in introductory programming courses.

To explore the impact of language of instruction on student performance with

respect to specific programming concepts and code-completion problems, questions were

grouped into categories (basics, logical expressions, conditionals, code-completion, and

so forth). Individual students' scores were computed for each category for the pre-test

and the post-test. The mean scores for each category were calculated for the pre- and

post-tests. One-factor, within-subjects analysis of variance (ANOVA) tests were then

performed to determine if language of instruction affected student performance on

questions addressing specific programming concepts and code-completion.

Statistical analyses revealed an effect of language of instruction on student

performance with respect to questions involving basics, logical expressions, and code-

completion. Specifically, the one-factor, within-subjects ANOVAs revealed a significant

effect of language of instruction on the following repeated measures:

www.manaraa.com

102

• "basics" score: F(2, 58) = 16.75, p < 0.01, MSerwr = 0.72, a = 0.05

• "logical expressions" score: F(2, 58) = 5.31, p = 0.01, MSerror = 1-66, a = 0.05

• "code-completion" score: F(2, 58) = 3.60, p = 0.03, MSerror = 4.07, a = 0.05

For "basics" and "logical expressions," the Tukey test revealed significant differences

between the Visual Basic mean and the means for Java and C++ at the 0.05 oc-level; the

difference between the Java and C++ means is insignificant. For "code-completion," the

Tukey test revealed a significant difference between the Visual Basic mean and the C++

mean at the 0.05 oc-level; the difference between the Java mean and the means for Visual

Basic and C++ is insignificant.

Language of instruction did not appear to affect student performance on questions

addressing object-oriented concepts. However, differences were noted within language

groups. Within-subjects paired samples Mests showed significant differences between

the pre- and post-test "classes and objects" means for the C++ and Visual Basic students.

For the C++ students, a paired samples f-test revealed a statistically reliable difference

between the mean pre-test (M = 0.92, s = 1.13) and post-test (M = 1.39, s = 1.30) "classes

and objects" scores: t{25) = -2.1 A, p = 0.01, a = 0.05. For the Visual Basic students, a

paired samples Mest revealed a statistically reliable difference between the mean pre-test

(M = 1.32, s = 1.17) and post-test (M = 0.55, s = 0.60) "classes and objects" scores: r(21)

= 2.94,/? = 0.01, a = 0.05.

www.manaraa.com

Overall student performance with respect to programming language can be

summarized as follows:

• The performance of the Java students was consistent.

• The performance of the C++ students improved.

• The performance of the Visual Basic students declined.

The first two scenarios are acceptable; the third is not.

The performance of the Visual Basic (VB) students was consistently poorer than

that of the Java and C++ students and declined overall. These observations lead to the

following questions:

1) Why was the performance of the VB students poorer than that of the Java and C++

students?

Several possible reasons present themselves. It may be that highly structured

languages like Java and C++ promote better overall learning than less structured

languages like Visual Basic. For example, Visual Basic allows programmers to use

variables without first declaring them. Visual Basic also allows certain types of methods

to be invoked using more than one syntactic expression. Neither of these practices is

allowed in C++ or Java.

It may also be that the interface design aspect of Visual Basic programming

detracts from student learning of fundamental concepts. I have learned through personal

experience teaching introductory programming using Visual Basic that students seem to

like the graphical aspect. However, it may be that the time spent learning to create

graphical user interfaces (GUIs) would be better spent learning the fundamental

programming constructs needed to implement them.

www.manaraa.com

2) Why did the performance of the VB students decline?

One possible explanation for this result has to do with the approach used to

teach the course. The prerequisite course introduced the students to Visual Basic

programming using the typical lecture/lab approach in which they were assessed at

regular intervals to reinforce their learning. The follow-up course - the course the

students were taking when they participated in this study - used a project-based

approach. According to the course syllabus, 90% of the student's grade was based on

the design and implementation of a small-scale enterprise system. The project was

intended to cover all basic and object-oriented programming concepts, but

emphasized interface design and event-driven programming. It may be that a tenuous

grasp of fundamental concepts in combination with the emphasis on designing

interfaces and handling events caused the students to forget what they had learned in

the previous course. It may also be that a semester-long project was less effective at

reinforcing student learning of fundamental concepts than exams, quizzes, and lab

assignments given regularly throughout the course.

3) Why is this result a reason for concern in CS education?

As discussed in Section 9.4, students who take introductory programming courses

taught in Visual Basic may very well go on to take additional programming courses

taught in other languages. The results of this research suggest that these students may be

at a disadvantage when they find themselves in programming classes with students who

have learned to program in languages such as C++ or Java. A firm grasp of basic

concepts and skills is necessary to succeed in any programming course, but particularly

www.manaraa.com

so in courses that use complex, highly structured object-oriented languages like C++ and

Java.

9.4 Implications for Computer Science Education

I recently asked a Rowan colleague why we (meaning the Computer Science

Department) switched from teaching Scheme to teaching Visual Basic in the Introduction

to Programming course back in 1996. He gave two reasons: 1) Because the Introduction

to Programming course was a "terminal" programming course for many students, the

faculty thought it was better to introduce them to programming using a RAD (Rapid

Application Development) tool such as Visual Basic; 2) Microsoft Office applications

support programming with Visual Basic for Applications (VBA), a programming

language derived from classic Visual Basic. However, many students who take the

Introduction to Programming course and other introductory programming courses taught

in Visual Basic (Introduction to Scientific Programming, Enterprise Computing I) go on

to take additional programming courses in languages other than Visual Basic. The results

of this research suggest that these students may be at a disadvantage when they find

themselves in programming classes with students who have learned to program in

languages such as C++ or Java.

In general, the results of this research suggest that diverse perspectives must be

considered when choosing languages in which to introduce students to programming. A

language that may seem to be the ideal choice when viewed from one perspective may

turn out to be the worst possible choice when viewed from another perspective.

Programming classes that students may take in the future should be considered when

selecting introductory languages.

www.manaraa.com

9.5 Future Work

Future work will entail improving the computer concepts assessment tool and

continuing my investigations with regard to the impact of different languages and

teaching approaches on student learning of introductory programming concepts. In

addition, analysis of the computer concepts survey data and the attitude survey data will

continue.

Although the computer concepts assessment tool performed reasonably well at its

first trial, the discussion in Section 9.2 suggests areas for improvement. First, the three

questions that performed poorly must either be revised or replaced with different

questions addressing similar topics. Second, about half of the distracters did not exhibit

the desired inverse relationship between percentage chosen and student score. As a

result, they must be modified or replaced with different distracters. Another problem in

conjunction with a correct response and an incorrect response in one of the "classes and

objects" questions, Question 24, was identified by one of the faculty reviewers. He noted

that although the pseudocode for the two responses was syntactically different, either the

correct or the incorrect response would work in Visual Basic because of the language's

"forgiving" nature. (Only the correct response would work in C++ or Java.) The

improperly performing distracter will have to be replaced with one that is incorrect in all

languages. Finally, work must continue to fully validate the tool after the indicated

changes have been made.

Because the students who participated in this study were not randomly chosen, it

may have been more appropriate to analyze the computer concepts survey data using

analysis of covariance (ANCOVA) instead of analysis of variance (ANOVA). The

www.manaraa.com

ANCOVA can be used to control for factors which cannot be randomized. Specifically,

it reduces the error term, thereby increasing the power of the F test (Garson, 2010;

Kinnear and Gray, 2010).

The original goal of this research was to explore the impact of different languages

and teaching approaches on student learning of introductory programming concepts. In

retrospect, it was an overly ambitious goal. The backgrounds of the students I was able

to recruit allowed me to investigate the impact of different programming languages on

student learning of introductory concepts, but only to conjecture about the impact of

different teaching approaches. Investigating the impact of different teaching approaches

most likely requires the involvement of multiple instructors at multiple institutions. For

example, members of the Rowan Computer Science faculty introduce students to Java

programming using BlueJ, a novice programming environment that supports the "objects-

first" approach. Comparing the impact of "objects-first" using BlueJ to the impact of

"imperative-first" using jGRASP (for example) on student learning of Java concepts

would necessitate involving instructors at universities who teach Java using the

"imperative-first" approach. In order to properly investigate the impact of different

teaching approaches, the programming language must be the same. Apart from Java, all

other programming courses at Rowan are taught using the "imperative-first" approach (as

far as I know, anyway).

Finally, analysis of the attitude survey data is still in progress. I was able to

obtain some sense of the students' overall responses during the process of entering the

data into the computer. However, that is hardly sufficient. Properly exploring the

relationship between students' attitudes toward computer science and programming and

www.manaraa.com

their performance on the computer concepts survey requires statistical analysis. I am

particularly interested in examining the correlation between students' responses to the

questions addressing the usefulness of programming in their future work and their scores

on the concepts survey.

www.manaraa.com

LIST OF REFERENCES

1. Aberson, C. L. (2010). Applied Power analysis for the Behavioral Sciences.
New York, NY: Routledge.

2. Adams, J. C. (2007). Alice, middle schoolers & the imaginary worlds camps. In
Proceedings of the 38th SIGCSE technical symposium on Computer science education,
New York: ACM Press, 307-311.

3. Agarwal, K. K., and Agarwal, A. (2005). Python for CS1, CS2 and beyond. Journal
of Computing Sciences in Colleges, 20(4), 262-270.

4. Agarwal, K. K., and Agarwal, A. (2006). Simply Python for CS0. Journal of
Computing Sciences in Colleges, 21(4), 162-170.

5. Algebra End-of-Course Assessment. (2009). Educational Testing Service (ETS).
Retrieved 29 December, 2009, from
http://www.ets.org/portal/site/ets/menuitem.435c0b5cc7bd0ae7015d9510c3921509/7vgn
extoid=4d7de3b5f64f4010VgnVCM10000022f95190RCRD.

6. Alice v3.0. (2010). Pittsburgh: Carnegie Mellon University. Retrieved 13 August,
2010, from http://www.alice.org/.

7. Allen, E., Cartwright, R., and Stoler, B. (2002). DrJava: A lightweight pedagogic
environment for Java. In SIGCSE '02: Proceedings of the 33rd SIGCSE technical
symposium on Computer science education, New York: ACM Press, 137-141.

8. Allen, K. (2007). Concept inventory central. Retrieved 29 December, 2009, from
https://engineering.purdue.edu/SCI/workshop/tools.html.

9. American Educational Research Association, American Psychological Association &
National Council on Measurement in Education (1999). Standards for Educational and
Psychological Testing. Washington, DC: American Educational Research Association.

10. Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard
University Press.

11. Ausubel, D. P. (1968). Educational Psychology: A Cognitive View. New York:
Holt, Rinehart, and Winston.

12. Ausubel, D. P. (1960). The use of advance organizers in the learning and retention
of meaningful verbal material. Journal of Educational Psychology, 51(5), 267-272.

http://www.ets.org/portal/site/ets/menuitem.435c0b5cc7bd0ae7015d9510c3921509/7vgn
http://www.alice.org/
https://engineering.purdue.edu/SCI/workshop/tools.html

www.manaraa.com

110

13. Babbie, E. (2004). The Practice of Social Research. Belmont, CA:
Wadsworth/Thomson Learning.

14. Bailie, F., Blank, G., Murray, K., and Rajaravivarma, R. (2002). Java visualization
using BlueJ. Journal of Computing Sciences in Colleges, 18(3), 175-176.

15. Barnes, D. J., and Kolling, M. (2005). Objects First With Java: A Practical
Introduction Using BlueJ. London: Pearson Prentice Hall.

16. Barnett, S. M., and Ceci, S. J. (2002). When and where do we apply what we learn?
A taxonomy for far transfer. Psychological Bulletin, 128(4), 612-637.

17. Ben-Ari, M. (1998). Constructivism in computer science education. In SIGCSE '98:
Proceedings of the 29th SIGCSE technical symposium on Computer science education,
New York: ACM Press, 257-261.

18. BlueJ. Retrieved 14 December, 2005, from http://www.bluej.org/.

19. Bonar, J., and Soloway, E. (1989). Preprogramming knowledge: A major source of
misconceptions in novice programmers. In E. Soloway and J. Spohrer (Eds.), Studying
the Novice Programmer. Hillsdale, NJ: Lawrence Erlbaum Associates, 325-353.

20. Bonar, J., and Soloway, E. (1983). Uncovering principles of novice programming.
In Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, New York: ACM Press, 10-13.

21. Borland JBuilder 2006. (2006). Retrieved 31 March, 2006, from
http://www.bor1and.com/us/products/ibuilder/index.html.

22. Bransford, J. D., Brown, A. L., and Cocking, R. R. (Eds.). (1999). How People
Learn: Brain, Mind, Experience, and School. Washington, DC: National Academy Press.

23. Clancy, M. (2004). Misconceptions and attitudes that interfere with learning to
program. In S. Fincher and M. Petre (Eds.), Computer Science Education Research.
London, UK: Taylor and Francis Group, 85-100.

24. Cobb, P., and Steffe, L. P. (1983). The constructivist researcher as teacher and
model builder. Journal for Research in Mathematics Education, 14(2), 83-94.

25. Cobb, P., Wood, T., Yackel, E., Nicholls, J., Wheatley, G., Trigatti, B., and Perlwitz,
M. (1991). Assessment of a problem-centered second-grade mathematics project.
Journal for Research in Mathematics Education, 22(1), 3-29.

26. CodeLab. (2004). Retrieved 18 April, 2007, from http://turingscraft.com/.

http://www.bluej.org/
http://www.bor1and.com/us/products/ibuilder/index.html
http://turingscraft.com/

www.manaraa.com

I l l

27. Computer Science Teachers Association (CSTA). (2005). Retrieved 5 November,
2009 from http://www.csta.acm.org/.

28. Concept Inventories for Computer Science. Retrieved 12 January, 2010, from
http://www-sal.cs.uiuc.edu/~zilles/csci.html.

29. Constructivism as a Paradigm for Teaching and Learning. (2004). Educational
Broadcasting Corporation. Retrieved 14 May, 2007, from
http://www.thirteen.org/edonline/concept2class/constructivism/index.html.

30. Conway, M., Audia, S., Burnette, T., Cosgrove, D., Christiansen, K., Deline, R., et al.
(2000). Alice: Lessons learned from building a 3D system for novices. In Proceedings
of the SIGCHI conference on Human factors in computing systems, New York: ACM
Press, 486-493.

31. Cooper, S., Dann, W., and Pausch, R. (2000). Alice: A 3-D tool for introductory
programming concepts. Journal of Computing Sciences in Colleges, 15(5), 107-116.

32. Cooper, S., Dann, W., and Pausch, R. (2003a). Teaching objects-first in introductory
computer science. In Proceedings of the 34th SIGCSE technical symposium on
Computer science education, New York: ACM Press, 191-195.

33. Cooper, S., Dann, W., and Pausch, R. (2003b). Using animated 3D graphics to
prepare novices for CS1. Computer Science Education, 13(1), 3-30.

34. CS2008 Review Taskforce. (2008). Computer Science Curriculum 2008: An Interim
Revision of CS 2001. Association for Computing Machinery (ACM)/IEEE Computer
Society. Retrieved 6 April, 2010, from
http://www.acm.org/education/curricula/ComputerScience2008.pdf.

35. Dann, W., Cooper, S., and Pausch, R. (2006). Learning to Program with Alice.
Upper Saddle River: Pearson Prentice Hall.

36. Dann, W., Cooper, S., and Pausch, R. (2000). Making the connection: Programming
with animated small world. ACM SIGCSE Bulletin, 32(3), 41-44.

37. Dann, W., Cooper, S., and Pausch, R. (2003). Objects: Visualization of behavior and
state. In Proceedings of the 8th annual conference on Innovation and technology in
computer science education, New York: ACM Press, 84-88.

38. DeAyala, R. J., Plake, B. S., and Impara, J. C. (2001). The impact of omitted
responses on the accuracy of ability estimation in item response theory. Journal of
Educational Measurement, 38(3), 213-234.

39. Dougherty, J. P. (2007). Concept visualization in CS0 using Alice. Journal of
Computing Sciences in Colleges, 22(3), 145-152.

http://www.csta.acm.org/
http://www-sal.cs.uiuc.edu/~zilles/csci.html
http://www.thirteen.org/edonline/concept2class/constructivism/index.html
http://www.acm.org/education/curricula/ComputerScience2008.pdf

www.manaraa.com

112

40. DrJava. Retrieved 31 March, 2006, from http://drjava.org/.

41. DuBoulay, B. (1989). Some difficulties of learning to program. In E. Soloway and
J. Spohrer (Eds.), Studying the Novice Programmer. Hillsdale, NJ: Lawrence Erlbaum
Associates, 283-299.

42. Ebel, R. L., and Frisbie, D. A. (1991). Essentials of Educational Measurement.
Englewood Cliffs, NJ: Prentice-Hall.

43. Eclipse SDK 3.1.2. (2006). Retrieved 31 March, 2006, from http://www.eclipse.org/.

44. Elvers, G. C. (2006). Using SPSS for One Way Analysis of Variance. Retrieved 27
July, 2010, from http://academic.udavton.edu/gregelvers/psy216/SPSS/lwavanova.htm.

45. Elvin, C. (2004). Test Item Analysis Using Microsoft Excel Spreadsheet Program.
Retrieved 30 March, 2010, from
http://www.eflclub.com/elvin/publications/2003/itemanalysis.html.

46. Evans, D. L., Gray, G. L., Krause, S., Martin, J., Midkiff, C , Notaros, B. M., et al.
(2003). Progress on concept inventory assessment tools. In Proceedings of the 33r

ASEE/IEEE Frontiers in Education Conference, New York: IEEE, T4G1-T4G8.

47. Even, R. (2005). Using assessment to inform instructional decisions: How hard can
it be? Mathematics Education Research Journal, 17(3), 45-61.

48. Fincher, S., and Petre, M. (Eds.). (2004). Computer Science Education Research.
London, UK: Taylor and Francis Group.

49. Fleury, A. (2000). Programming in Java: Student-constructed rules. ACM SIGCSE
Bulletin, 32(1), 197-201.

50. Garson, G. D. (2010). Reliability Analysis, from Statnotes: Topics in Multivariate
Analysis. Retrieved 20 July, 2010, from
http://faculty.chass.ncsu.edu/garson/pa765/statnote.htm.

51. Gersting, J. L. (2007). Mathematical Structures for Computer Science. New York,
NY: W. H. Freeman and Company.

52. Goldman, K., Gross, P., Heeren, C , Herman, G., Kaczmarczyk, L., Loui, M. C , and
Zilles, C. (2008). Identifying important and difficult concepts in introductory computing
courses using a Delphi process. In SIGCSE '08: Proceedings of the 39th SIGCSE
technical symposium on computer science education, New York: ACM Press.

http://drjava.org/
http://www.eclipse.org/
http://academic.udavton.edu/gregelvers/psy216/SPSS/lwavanova.htm
http://www.eflclub.com/elvin/publications/2003/itemanalysis.html
http://faculty.chass.ncsu.edu/garson/pa765/statnote.htm

www.manaraa.com

113

53. Grandell, L., Peltomaki, M , Back R., and Salakoski, T. (2006). Why complicate
things?: Introducing programming in high school using Python. In Proceedings of the
8th Australian conference on Computing education, Darlinghurst, Australia: Australian
Computer Society, Inc., 71-80.

54. Gray, K. E., and Flatt, M. (2003). ProfessorJ: a gradual introduction to Java through
language levels. In OOPSLA '03: Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications, New
York: ACM Press, 170-177.

55. Greeno, J. G. (2006). Authoritative, accountable positioning and connected, general
knowing: Progressive themes in understanding transfer. The Journal of the Learning
Sciences, 15(4), 537-547.

56. Gross, P., and Powers, K. (2005). Evaluating assessments of novice programming
environments. In Proceedings of the 2005 international workshop on Computing
education research, New York: ACM Press, 99-110.

57. Hadjerrouit, S. (1999). A constructivist approach to object-oriented design and
programming. In Proceedings of the 4th annual SIGCSE/SIGCUE ITiCSE conference on
Innovation and technology in computer science education, New York: ACM Press, 171-
174.

58. Haladyna, T. M. (2004). Developing and Validating Multiple-Choice Test Items.
Mahwah, NJ: Lawrence Erlbaum Associates.

59. Hartley, S. J. (2009). Introduction to scientific programming syllabus. Retrieved 15
November, 2009 from
http://elvis.rowan.edu/~hartlev/Courses/IntroSciProg/2009/Fall/syllabus.html.

60. Hendrix, T. D., Cross, II, J. H., and Barowski, L. A. (2004). An extensible
framework for providing dynamic data structure visualizations in a lightweight IDE. In
SIGCSE '04: Proceedings of the 35th SIGCSE technical symposium on Computer science
education, New York: ACM Press, 387-391.

61. Hergenhahn, B. R., and Olson, M. H. (2001). An Introduction to Theories of
Learning. Upper Saddle River: Pearson Prentice Hall.

62. Herman, G. L., Loui, M. C , and Zilles, C. (2010). Creating the digital logic concept
inventory. In SIGCSE '10: Proceedings of the 41st SIGCSE technical symposium on
computer science education, New York: ACM Press.

63. Hestenes, D., and Halloun, I. (1995). Interpreting the Force Concept Inventory. The
Physics Teacher, 33(8), 502-506.

http://elvis.rowan.edu/~hartlev/Courses/IntroSciProg/2009/Fall/syllabus.html

www.manaraa.com

114

64. Hestenes, D., Wells, M., and Swackhamer, G. (1992). Force Concept Inventory.
The Physics Teacher, 30(3), 141-151.

65. Hoegh, A., and Moskal, B. (2009). Examining science and engineering students'
attitudes toward computer science. In Proceedings of the 39n ASEE/IEEE Frontiers in
Education Conference, New York: IEEE, W1G-1-W1G-6.

66. Hsia, J. I., Simpson, E., Smith, D., and Cartwright, R. (2005). Taming Java for the
classroom. In SIGCSE '05: Proceedings of the 36th SIGCSE technical symposium on
Computer science education, New York: ACM Press, 327-331.

67. Hundhausen, C. D., Farley, S., and Brown, J. L. (In press). Can direct manipulation
lower the barriers to programming and promote positive transfer to textual programming?
An experimental study. To appear in Proceedings of the IEEE 2006 Symposium on
Visual Languages and Human-Centric Computing.

68. International Technology Education Association (ITEA). (2007). Standards for
Technological Literacy: Content for the Study of Technology. Reston, VA: ITEA.

69. Jackson, S. L., Krajcik, J., and Soloway, E. (1998). The design of guided learner-
adaptable scaffolding in interactive learning environments. In Proceedings of the
SIGCHI conference on Human factors in computing systems, New York: ACM Press,
187-194.

70. Java Platform, Standard Edition (J2SE). (2005). Santa Clara: Sun Microsystems,
Inc. Retrieved 25 December, 2005, from http://java.sun.com/i2se/downloads/index.html.

71. JavaScript. (2007). Wikipedia, the Free Encyclopedia. Retrieved 1 May, 2007, from
http://en.wikipedia.org/wiki/JavaScript.

72. Jeliot 3. Retrieved 31 March, 2006, from http://cs.joensuu.fi/jeliot/index.php.

73. jGRASP 1.8.4. (2006). Retrieved 20 October, 2006, from http://jgrasp.org/.

74. Joint Task Force on Computing Curricula. (2001). Computing Curricula 2001
Computer Science. IEEE Computer Society/Association for Computing Machinery.
Retrieved 7 December, 2009, from
http://www.computer.org/poital/cms docs ieeecs/ieeecs/education/cc2001/cc2001 .pdf.

75. JUnit. (2004). Retrieved 9 April, 2006 from http://www.iunit.org/index.htm.

76. Kaczmarczyk, L. C , Petrick, E. R., East, J., P., and Herman, G. L. (2010).
Identifying student misconceptions of programming. In SIGCSE '10: Proceedings of the
41st SIGCSE technical symposium on computer science education, New York: ACM
Press.

http://java.sun.com/i2se/downloads/index.html
http://en.wikipedia.org/wiki/JavaScript
http://cs.joensuu.fi/jeliot/index.php
http://jgrasp.org/
http://www.computer.org/poital/cms
http://www.iunit.org/index.htm

www.manaraa.com

115

77. Kelleher, C , and Pausch, R. (2005). Lowering the barriers to programming: A
taxonomy of programming environments and languages for novice programmers. ACM
Computing Surveys, 37(2), 83-137.

78. Kelleher, C , and Pausch, R. (2005). Stencils-based tutorials: Design and evaluation.
In Proceedings of the SIGCHI conference on Human factors in computing systems, New
York: ACM Press, 541-550.

79. Kelley, L. (2002). Course Embedded Assessment Process. California Assessment
Institute. Retrieved 20 May, 2007, from http://cai.cc.ca.us/Resources/.

80. Kessler, C. M., and Anderson, J. R. (1989). Learning flow of control: Recursive and
iterative procedures. In E. Soloway and J. Spohrer (Eds.), Studying the Novice
Programmer. Hillsdale, NJ: Lawrence Erlbaum Associates, 229-260.

81. Kinnear, P. R., and Gray, C. D. (2010). PASW Statistics 17 Made Simple. New
York, NY: Psychology Press.

82. Rolling, M., Quig, B., Patterson, A., and Rosenberg, J. (2003). The BlueJ system
and its pedagogy. Computer Science Education, 13(4), 249-268.

83. Kuder, G. F., and Richardson, M. W. (1937). The theory of the estimation of test
reliability. Psychometrika, 2(3), 151-160.

84. Kurland, D. M., and Pea, R. D. (1989). Children's mental models of recursive Logo
programs. In E. Soloway and J. Spohrer (Eds.), Studying the novice programmer.
Hillsdale, NJ: Lawrence Erlbaum Associates, 315-323.

85. Kyd, C. (2006a). An Excel Tutorial: An Introduction to Excel's Normal Distribution
Functions. ExcelUser, Inc. Retrieved 21 July, 2010, from
http://www.exceluser.com/explore/statsnormal.htm.

86. Kyd, C. (2006b). An Excel Tutorial: How to Create Normal Curves in Excel, with
Shaded Areas. ExcelUser, Inc. Retrieved 21 July, 2010, from
http://www.exceluser.com/explore/nonTialcurve.htm.

87. Lobato, J. (2006). Alternative perspectives on the transfer of learning: History,
issues, and challenges for future research. The Journal of the Learning Sciences, 15(4),
431-449.

88. Lobato, J. (2003). How design experiments can inform a rethinking of transfer and
vice versa. Educational Researcher, 32(1), 17-20.

http://cai.cc.ca.us/Resources/
http://www.exceluser.com/explore/statsnormal.htm
http://www.exceluser.com/explore/nonTialcurve.htm

www.manaraa.com

116

89. Major Field Test for Computer Science. (2009). Educational Testing Service (ETS).
Retrieved 29 December, 2009, from
http://www.ets.org/portal/site/ets/menuitem.1488512ecfd5b8849a77bl3bc3921509/7vgne
xtoid=fd29af5e44df4010VgnVCM10000022f95190RCRD&vgnextchannel=eddcl44e50
bd2110 VgnVCM 10000022f95190RCRD.

90. Mayer, R. E. (1979). Can advance organizers influence meaningful learning?
Review of Educational Research, 49(2), 371-383.

91. Mayer, R. E. (1975). Different problem-solving competencies established in
learning computer programming with and without meaningful models. Journal of
Educational Psychology, 67(6), 725-734.

92. Mayer, R. E. (1975). Information processing variables in learning to solve problems.
Review of Educational Research, 45(4), 525-541.

93. Mayer, R. E. (1989). The psychology of how novices learn computer programming.
In E. Soloway and J. Spohrer (Eds.), Studying the Novice Programmer. Hillsdale, NJ:
Lawrence Erlbaum Associates, 129-159.

94. Mayer, R. E. (1976). Some conditions of meaningful learning for computer
programming: Advance organizers and subject control of frame order. Journal of
Educational Psychology, 68(2), 143-150.

95. Mayer, R. E., and Bromage, B. K. (1980). Different recall protocols for technical
texts due to advance organizers. Journal of Educational Psychology, 72(2), 209-225.

96. McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D.,
et al. (2001). A multi-national, multi-institutional study of assessment of programming
skills of first-year CS students. ACM SIGCSE Bulletin, 33(4), 125-140.

97. Mclver, L. (2002). Evaluating languages and environments for novice programmers.
In J. Kuljis, L. Baldwin, and R. Scoble (Eds.), Proceedings of the 14th Annual Workshop
of the Psychology of Programming Interest Group, Brunei University, London, UK, 100-
110.

98. Medlock, A. A. (2008). CS 130: Computer programming concepts with 3-D
animation. Retrieved 15 November, 2009 from
http://www.cs.drexel.edu/~aalban/CS 131/.

99. Mercer, R. (1995). Computing Fundamentals with C++. Wilsonville, OR: Franklin,
Beedle and Associates.

100. Merriam-Webster's Collegiate Dictionary (ll'h ed.). (2003). Springfield, MA:
Merriam-Webster, Inc.

http://www.ets.org/portal/site/ets/menuitem.1488512ecfd5b8849a77bl3bc3921509/7vgne
http://www.cs.drexel.edu/~aalban/CS

www.manaraa.com

117

101. Microsoft Visual J++ 6.0. (2006). Retrieved 31 March, 2006, from
http://rnsdn.rnicrosoft.corn/vjsharp/pi'oductinfo/visualj/visuali6/.

102. Microsoft Visual Studio 2010. (2010). Retrieved 19 August, 2010, from
http://www.microsoft.com/visualstudio/en-us.

103. Mitchell, J. W., and Martin, J. K. (2007). Use of thermodynamics, fluid mechanics
and heat transfer concept inventories to assess student learning in core courses. Retrieved
29 December, 2009 from
https://engineering.purdue.edu/SCI/workshop/summaries/Fluids%20Heat%20Thenno%2
0Long%20Summarv.doc.

104. Moreno, A., and Myller, N. (2003). Producing an educationally effective and
usable tool for learning, the case of the Jeliot family. In Proceedings of the International
Conference on Networked e-learning for European Universities, Granada, Spain.

105. Moreno, A., Myller, N., Sutinen, E., and Ben-Ari, M. (2004). Visualizing
programs with Jeliot 3. In AVI '04: Proceedings of the working conference on Advanced
visual interfaces, New York: ACM Press, 373-376.

106. Moskal, B., Lurie, D., and Cooper, S. (2004). Evaluating the effectiveness of a new
instructional approach. In Proceedings of the 35th SIGCSE technical symposium on
Computer science education, New York: ACM Press, 75-79.

107. National Educational Technology Standards (NETS'S) and Performance Indicators
for Students. (2007). International Society for Technology in Education (ISTE).
Retrieved 11 August, 2010, from
http://www.iste.org/Content/NavigationMenu/NETS/ForStudents/2007Standards/NETS f
or Students 2007 Standards.pdf.

108. NetBeans IDE 5.0. Retrieved 22 July, 2006, from http://www.netbeans.org/.

109. Nourie, D. (2002). Teaching Java technology with BlueJ. Santa Clara: Sun
Microsystems, Inc. Retrieved 23 December, 2005, from
http://iava.sun.com/features/2002/07/bluei.html.

110. Nugent, G., Soh, L., Samal, A., and Lang, J. (2006). A placement test for computer
science: Design, implementation, and analysis. Computer Science Education, 16(1), 19-
36.

l l l .O lan , M. (2004). Dr. J vs. the bird: Java IDE's one-on-one. Journal of Computing
Sciences in Colleges, 19(5), 44-52.

112. Oldham, J. D. (2005). What happens after Python in CS1? Journal of Computing
Sciences in Colleges, 20(6), 7-13.

http://rnsdn.rnicrosoft.corn/vjsharp/pi'oductinfo/visualj/visuali6/
http://www.microsoft.com/visualstudio/en-us
https://engineering.purdue.edu/SCI/workshop/summaries/Fluids%20Heat%20Thenno%252
http://www.iste.org/Content/NavigationMenu/NETS/ForStudents/2007Standards/NETS
http://www.netbeans.org/
http://iava.sun.com/features/2002/07/bluei.html

www.manaraa.com

118

113. Packer, M. (2001). The problem of transfer, and the sociocultural critique of
schooling. The Journal of the Learning Sciences, 10(4), 493-514.

114. Papert, S. (1993). Mindstorms: Children, Computers, and Powerful Ideas.
Cambridge, MA: Perseus Publishing.

115. PASW Statistics 18. (2010). Retrieved 22 July, 2010, from http://www.spss.com/.

116. Patterson, A., Kolling, M., and Rosenberg, J. (2003). Introducing unit testing with
BlueJ. In Proceedings of the 8th annual conference on Innovation and technology in
computer science education, New York: ACM Press, 11-15.

117. Pattis, R. (1981). Karel the Robot. New York: John Wiley and Sons.

118. Pea, R. D., Soloway, E., and Spohrer, J. (1987). The buggy path to the
development of programming expertise. Focus on Learning Problems in Mathematics,
9(1), 5-30.

119. Perkins, D. N., and Salomon, G. The science and art of transfer. Retrieved 4
February, 2007, from http://learnweb.harvard.edu/alps/thinking/docs/trancost.htm.

120. Pirolli, P., and Recker, M. (1994). Learning strategies and transfer in the domain of
programming. Cognition and Instruction, 12(3), 235-275.

121. Poison, P. G., Bovair, S., and Kieras, D. (1987). Transfer between text editors. In
CHI and GI1987 Conference Proceedings: Human Factors in Computing Systems and
Graphics Interface, New York, NY: ACM Press, 27-32.

122. Poison, P. G., and Kieras, D. E. (1985). A quantitative model of the learning and
performance of text-editing knowledge. In CHI 1985 Conference Proceedings: Human
Factors in Computing Systems and Graphics Interface, New York, NY: ACM Press, 207-
212.

123. Poison, P. G., Muncher, E., and Engelbeck, G. (1986). A test of a common
elements theory of transfer. In CHI 1986 Conference Proceedings: Human Factors in
Computing Systems and Graphics Interface, New York, NY: ACM Press, 78-83.

124. Popyack, J. L. (2009). CS 171/SE 102: Computer Programming I. Retrieved 15
November, 2009 from http://www.cs.drexel.edu/~mcs 171 /Wi09.

125. Powers, K., Ecott, S., and Hirshfield, L. M. (2007). Through the looking glass:
Teaching CS0 with Alice. In Proceedings of the 38th SIGCSE technical symposium on
Computer science education, New York: ACM Press, 213-217.

http://www.spss.com/
http://learnweb.harvard.edu/alps/thinking/docs/trancost.htm
http://www.cs.drexel.edu/~mcs

www.manaraa.com

119

126. Preece, J., Rogers, Y., and Sharp, H. (2002). Interaction Design: Beyond Human-
Computer Interaction. New York: John Wiley & Sons.

127. ProfessorJ. Retrieved 31 March, 2006, from http://www.cs.utah.edu/~kathyg/profj/.

128. Pro vine, D. (2009). Introduction to programming syllabus. Retrieved 15
November, 2009 from http://elvis.rowan.edu/~kilrov/class/intro/7syllabus.

129. Puntambekar, S., and Hubscher, R. (2005). Tools for scaffolding students in a
complex learning environment: What have we gained and what have we missed?
Educational Psychologist, 40(1), 1-12.

130. Putnam, R. T., Sleeman, D., Baxter, J. A., and Kuspa, L. K. (1989). A summary of
misconceptions of high-school BASIC programmers. In E. Soloway and J. Spohrer
(Eds.), Studying the novice programmer. Hillsdale, NJ: Lawrence Erlbaum Associates,
301-314.

131. Python. (2007). Python Software Foundation. Retrieved 22 April, 2007, from
http://python.org/.

132. Radenski, A. (2006). "Python first": A lab-based digital introduction to computer
science. In Proceedings of the 11th annual SIGCSE conference on Innovation and
technology in computer science education, New York: ACM Press, 197-201.

133. Ragonis, N., and Ben-Ari, M. (2005a). A long-term investigation of the
comprehension of OOP concepts by novices. Computer Science Education, 15(3), 203-
221.

134. Ragonis, N., and Ben-Ari, M. (2005b). On understanding the statics and dynamics
of object-oriented programs. In SIGCSE '05: Proceedings of the 36th SIGCSE technical
symposium on Computer science education, New York: ACM Press, 226-230.

135. Reis, C , and Cartwright, R. (2004). Taming a professional IDE for the classroom.
In SIGCSE '04: Proceedings of the 35th SIGCSE technical symposium on Computer
science education, New York: ACM Press, 156-160.

136. Rist, R. S. (1986). Plans in programming: Definition, demonstration and
development. In E. Soloway and R. Iyengar (Eds.), Empirical Studies of Programmers.
Norwood, NJ: Ablex Publishing Corporation, 28-47.

137. Rist, R. S. (1989). Schema creation in programming. Cognitive Science, 13, 389-
414.

138. Robins, A., Rountree, J., and Rountree, N. (2003). Learning and teaching
programming: A review and discussion. Computer Science Education, 13(2), 137-172.

http://www.cs.utah.edu/~kathyg/profj/
http://elvis.rowan.edu/~kilrov/class/intro/7syllabus
http://python.org/

www.manaraa.com

139. Savitch, W. (2005). Java: An Introduction to Problem Solving & Programming.
Upper Saddle River: Pearson Prentice Hall.

140. Savitch, W. (2003). Problem Solving with C++: The Object of Programming.
Boston, MA: Addison-Wesley.

141. Scholtz, J., and Wiedenbeck, S. (1993). An analysis of novice programmers
learning a second language. In C. R. Cook, J. C. Scholtz, and J. C. Spohrer (Eds.),
Empirical Studies of Programmers: Fifth Workshop. Norwood, NJ: Ablex Publishing
Corporation, 187-205.

142. Scholtz, J., and Wiedenbeck, S. (1990a). Learning second and subsequent
programming languages: A problem of transfer. International Journal of Human-
Computer Interaction, 2(1), 51-72.

143. Scholtz, J., and Wiedenbeck, S. (1990b). Learning to program in another language.
In Proceedings of INTERACT '90, Amsterdam: Elsevier Science, 925-930.

144. Sebesta, R. W. (2002). Concepts of Programming Languages. Boston, MA:
Addison-Wesley.

145. Shannon, C. (2003). Another breadth-first approach to CS I using Python. In
SIGCSE '03: Proceedings of the 34th SIGCSE technical symposium on Computer science
education, New York: ACM Press, 248-251.

146. Singley, M. K., and Anderson, J. R. (1988). A keystroke analysis of learning and
transfer in text editing. Human-Computer Interaction, 3(3), 223-27'4.

147. Singley, M. K., and Anderson, J. R. (1989). The Transfer of Cognitive Skill.
Cambridge, MA: Harvard University Press.

148. Singley, M. K., and Anderson, J. R. (1985). The transfer of text-editing skill.
International Journal of Man-Machine Studies, 22, 403-423.

149. Sivula, K. (2005). A qualitative case study on the use of Jeliot 3. Unpublished
master's thesis, University of Joensuu, Joensuu, Finland.

150. Soloway, E., Bonar, J., and Ehrlich, K. (1989). Cognitive strategies and looping
constructs: An empirical study. In E. Soloway and J. Spohrer (Eds.), Studying the Novice
Programmer. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 191-207.

151. Soloway, E., Ehrlich, K., Bonar, J., and Greenspan, J. (1984). What do novices
know about programming? In A. Badre and B. Shneiderman (Eds.), Directions in
Human-Computer Interaction. Norwood, NJ: Ablex Publishing Corporation, pp. 27-54.

www.manaraa.com

121

152. Soloway, E., and Spohrer, J. C. (Eds.)- (1989). Studying the Novice Programmer.
Hillsdale, NJ: Lawrence Erlbaum Associates.

153. Spohrer, J. C , Soloway, E., and Pope, E. (1989). A goal/plan analysis of buggy
Pascal programs. In E. Soloway and J. Spohrer (Eds.), Studying the Novice Programmer.
Hillsdale, NJ: Lawrence Erlbaum Associates, 355-399.

154. Spohrer, J. C , and Soloway, E. (1989). Novice mistakes: Are the folk wisdoms
correct? In E. Soloway and J. Spohrer (Eds.), Studying the Novice Programmer.
Hillsdale, NJ: Lawrence Erlbaum Associates, 401-416.

155. Stamouli, I., and Huggard, M. (2006). Object oriented programming and program
correctness: The students' perspective. In Proceedings of the 2006 international
workshop on Computing education research, New York: ACM Press, 109-118.

156. Tadepalli, P., and Cunningham, H. C. (2004). JavaCHIME: Java class hierarchy
inspector and method executer. In ACM-SE 42: Proceedings of the 42nd annual
Southeast regional conference, New York: ACM Press, 152-157.

157. Test Link. (2009). Educational Testing Service (ETS). Retrieved 29 December,
2009, from
http://www.ets.org/portal/site/ets/menuitei-n.1488512ecfd5b8849a77bl3bc3921509/7vgne
xtoid=ed462d3631df4010VgnVCM10000022f95190RCRD&vgnextchannel=85afl97a48
4f4010VgnVCM10000022f95190RCRD.

158. Tew, A. E., and Guzdial, M. (2010). Developing a validated assessment of
fundamental CS1 concepts. In SIGCSE '10: Proceedings of the 41st SIGCSE technical
symposium on computer science education, New York: ACM Press.

159. Thorndike, E. L. (1906). Principles of Teaching. New York, NY: A. G. Seiler.

160. Van Haaster, K. (2003). Introductory programming in an OO environment: An
evaluation of a visual tool. Unpublished honors thesis, Monash University, Caulfield
East, Victoria 3145, Australia.

161. Van Haaster, K., and Hagan, D. (2004). Teaching and learning with BlueJ: An
evaluation of a pedagogical tool. In Proceedings of the Information Science and
Information Technology Education Joint Conference, Rockhampton, QLD, Australia.

162. Von Glasersfeld, E. (1990). An exposition of Constructivism: Why some like it
radical. In R. B. Davis, C. A. Maher, and N. Noddings (Eds.), Monographs of the
Journal for Research in Mathematics Education. Reston, VA: National Council of
Teachers of Mathematics, pp. 19-29.

http://www.ets.org/portal/site/ets/menuitei-n.1488512ecfd5b8849a77bl3bc3921509/7vgne

www.manaraa.com

163. Wiedenbeck, S., Ramalmgam, V., Sarasamma, S., and Corntore, C. L. (1999). A
comparison of the comprehension of object-oriented and procedural programs by novice
programmers. Interacting with Computers, 11, 255-282.

164. Wiedenbeck, S., and Ramalingam, V. (1999). Novice comprehension of small
programs written in the procedural and object-oriented styles. International journal of
Human-Computer Studies, 51, 71-87.

165. Wood, D., Bruner, J. S., and Ross, G. (1976). The role of tutoring in problem
solving. Journal of Child Psychology and Psychiatry and Allied Disciplines, 17(2), 89-
100.

166. Wu, Q., and Anderson, J. R. (1991). Knowledge transfer among programming
languages. In Proceedings of the 13n Conference of the Cognitive Science Society,
Hillsdale, NJ: Lawrence Erlbaum Associates, 376-381.

167. Wu, Q., and Anderson, J. R. (1990). Problem-solving transfer among programming
languages. For submission to: Human-Computer Interaction.

168. Zweben, S. (2009). Computing degree and enrollment trends. Computing
Research Association. Retrieved 5 December, 2009, from
http://www.cra.oro/govaffairs/blog/archives/CRATaulbeeReport-StudentEnrollment-07-
08.pdf.

http://www.cra.oro/govaffairs/blog/archives/CRATaulbeeReport-StudentEnrollment-07-

www.manaraa.com

123

APPENDIX A: DEMOGRAPHIC SURVEY DATA FOR PILOT STUDY

_ OJ TO en m .

rfi m ; ^ j

m ui N <^

*H m m m r j r j

<tf
m
b

r<~

V
™

fe

en
m

m

r j
i>

m

ift
(̂

ra

10

on
m
£

N uv te

E» C m

S i2-i£

I I I

-^ a. —,
•& ni *j-

S 5 ;S i t 5 .

in TO

5 2 . S

I * .ill!I
E E

U. l/J U. I I

I 3 LJ —

II
e is
i. E

£ £ t ^ i P
rim

ar
y

La
ng

ua
ge

 K
ey

< P
yt

ho
n

O
th

e
r

, (11
n
F
^ * £

D

i f t
en
• ^

£N

10
cn
«T
(M

t n
•4
r - j

ta cn
ff> <n
vl- ^
rf\J CJ

O
O
LTl
c>i

»-i

a in
r j

ui in
o o o
1/1 UI UI
I^J r>j a

c

b

no
p

Q .

>
*

1
a

!
«

ig
ht

w
M

<-1

i / i
I I

t'^i

pec

I ' j

I I
en

Q-
< ! •

II
*T

s
tu
ii

LT(

c:

n
1

3

f
T3

&,

o
£

Q

•—

s

www.manaraa.com

S
u

b
je

ct

C
o

m
p

u
te

r
C

on
ce

pt
s

S
u

rv
e

y

S
co

re
s

(b
y

to
pi

c
ar

ea
;!

S
co

re
s

(b
y

q
u

e
st

io
n

ty
pe

'i

ID
 N

u
m

b
er

 2
4

3
S

1
2

4
3

6

2
4

3
7

2
4

3
S

2
4

3
3

2
5

0
0

2
5

0
1

B
as

ic
s

3
,0

0
0

.

1.
66

7

3
.0

0
0

1.
66

7

0
.3

3
4

1.
66

7

2
.0

0
0

L
og

ic
al

O
p

er
at

o
rs

-0
.3

33

0
.6

6
7

2.
C

0O

0
.6

6
7

'
2

.0
0

0

0.
66

7/

1.
00

0

If
 3
.0

3
0

1.
66

7

1.
66

7

0
.3

3
4

3
.0

0
0

0
.3

3
4

1.
66

7

L
oo

ps

Iw
/o

a
rr

ay
s

j

1.
66

7

3
.0

0
0

1.
66

7

1.
66

7

-.
1.

66
7

:
1.

66
7

1.
66

7

L
oo

ps

|'w
,<

ar
ra

y
sj

2
.0

0
0

2
.0

3
0

-0
.6

66

0
.6

6
7 2

0
.6

6
7

2.
«5

G

Fu
n

ct
io

n
s

(p
ar

am
et

er
s;

0
.0

0
0

-0
.6

6
6

-C
.6

S
6

0
.6

6
7

•0
.6

6&

.:
0

.6
6

7

-G
.6

66

Fu
 n

ct
ic

n
s

(r
et

ur
n

v
al

u
es

;

-0
.3

3
3

43
,3

33

•C
.3

33

-0
.3

33

-2
.3

33

i:o
oo

-0

.3
33

A
rr

ay
s

lo
nl

y;

1.
00

0

1.
00

0

l.G
C

O

1.
00

0

-0
.3

33

1.
00

0

1.
03

0

O
bj

ec
ts

1.
00

0

-0
.3

33

-3
.3

33

1.
66

7

3.
00

0

3
.0

0
0

3.
00

0

O
ve

ra
ll

1
1

.0
0

1

B
.6

63

7
.3

3
6

S
.0

O
3

1
0

.6
5

3

1
0

.6
6

3

1
1

.3
3

5

D
ef

in
it

io
n

4
.0

0
1

2
.3

3
5

S
.C

S
1

4
.6

6
5

3.
33

5

-
4

.6
6

8
:

7
3

3
4

: T
ra

ce

4
.0

0
0

3
.3

3
4

2
.0

0
1

2
.0

0
1

1
,3

.3
3

4

V
r4

.6
67

-:
 -

2.
33

4

W
ri

te

3
.0

0
0

3
.0

0
0

0
.3

3
4

1.
33

4

.4
,0

0
0

1.
33

4

1;
66

7

25
02

3.

00
0

0
.6

6
7

1.
66

7
1.

66
7

0
.6

6
7

2
5

0
3

2
5

0
4

0
.6

6
7

1.
66

7

-3
.6

6
6

0
.3

3
4

0
.6

6
7

0
.3

3
4

0
,3

3
4

0
.3

3
4

0
:6

6
7

0
:6

6
7

0
.6

6
7

-0
.3

33

1.
C

0O

3.
00

0
12

.C
02

-0
.6

6
6

"
-0

:3
3

3
0

.0
0

0
-0

.9
S

S
-0

.6
6

2

-0
.3

33

-3
.3

33

-0
.3

33

1.
66

7
4

.3
3

7

.3
34

0

.6
6

8

1.
00

2
-0

.3
3

2
-1

,3
3

2

0
.6

6
3

2
.3

3
4

1.
33

4

2
5

0
5

0.
33

4

2
5

0
6

3.
00

0

2
5

0
7

0
.3

3
4

2
5

0
8

1.
66

7

-0
.6

66

1.
66

7
-0

.9
3

3
-0

.6
66

0
.6

6
7

1.
66

7
1.

66
7

2
.0

0
0

0
,5

6
7

3
.0

0
0

-
1.

65
7

:
0

i6
6

7
"

2
.0

0
0

:3
.0

C
G

0

.6
6

7
-0

.6
6

6
-

3.
66

6
-0

.3
33

-0

.3
33

1

.6
6

7
.

0
.0

0
5

0
.6

6
3

-0
.6

6
5

O
ve

ra
ll

M
e3

n

A
lic

e
M

ea
n

P
yt

h
o

n
M

e
a

n

1.
71

5
0

.7
1

5
1.

56
7

1.
31

0
0

.8
5

7

1.
33

4
1.

66
7

2.
66

7
1.

41
7.

::
0.

33
4:'!

1.
53

4
0

.4
6

7
0

.8
6

7
:

1.
40

0
1

,2
8

0
'

0
.6

6
7

-0
.3

33

1.
00

0

0
.8

6
7

-S
.3

33

-C
.3

33

-0
.6

66

-0
.3

33

1.
00

C

-O
.H

3
-0

.2
3

8
0

,5
4

3

:i-
0.

33
3.

.-
.

'
-0

.3
3

3
:0

.3
3

4

-C
.3

33

-0
.0

6
6

0
.5

3
3

3.
C

O
O

3.
00

0

1.
65

7

1.
71

5

1.
83

4

1.
26

7

1
3

.3
3

5

3
.3

3
6

8
.3

3
6

8
,1

6
3

S
.3

13

6
.8

7
0

P
rim

ar
y

La
ng

ua
ge

K
ey

A
lic

e

P
yt

ho
n

O
th

e
r

F
ig

ur
e

B
-l

.P
re

-t
es

t
re

su
lts

 fo
r

pi
lo

t s
tu

dy
.

o.
co

i

7.
33

4
2

.0
0

1
4

.0
0

0

3.
33

5
3.

33
4

2
.6

6
7

4
.S

S
S

2
.0

0
1

1.
66

7

4
.0

2
5

2
,2

1
5

1.
32

3

4
.0

8
5

2
.6

6
8

2
.1

5
7

3
.2

0
2

2
.4

6
7

1.
20

1

4^

www.manaraa.com

S
ub

je
ct

C

om
pu

te
r

C
on

ce
pt

s
S

ur
ve

y

ID
 N

um
be

r

S
ca

re
s

[b
y

to
p

ic
 a

re
a

;

Lo
gi

ca
l

B
as

ic
s

O
p

e
ra

to
rs

If

S
co

re
s

[b
yq

u
e

st
io

n
ty

p
e

)

Lo
op

s
Lo

op
s

F
un

ct
io

ns

[w
/o

(w

/
F

un
ct

io
ns

(r

et
ur

n
A

rr
ay

s

a
rr

a
ys

;
a

rr
a

ys
!

[p
ar

am
et

er
s]

!
va

lu
es

)
(o

nl
y)

O

bj
ec

ts

O
ve

ra
ll

D
e

fin
iti

o
n

T
ra

ce

V
;r

it
e

2
4

9
5

3
.0

0
0

'

2
4

9
6

1.
66

7

2
4

9
7

1.
66

7

2
4
9
S

1.
66
7

2
4
9
9

3
.
0
0
0

2
S
O
G

0
.
3
3
4

2
5
0
1
'

••
•.
3.
00
0

25
02

1.

66
7

2
.0

0
0

3
.0

0
0

'3
.0

0
0

2
.0

0
0

'

2
.0

0
0

0
.3

3
4

1.
66

7
0

,6
6

7
.:

0
.6

6
7

3.
00

0
: 3

.0
0

0
0

.6
6

7 :

2.
00

0
3.

00
0

0
.3

3
4

.
0.

66
7

2
.0

0
0

3
.0

0
0

3.
00

0
0

.6
6

7
,

0
.6

5
7

'1
.6

6
7

0
.3

3
4

2
.0

0
0

'0
.6

6
7

.3
.0

O
0-

:
1.

66
7

-0
,6

6
6

"

-0
.6

66

1.
66

7
1.

66
7

0
.6

6
7

0
.6

6
7

-0
.3

33

1.
00

0

-0
.6

6
6

-0
.3

33

1.
00

0

0
.6

6
7

-0
.3

33

1.
00

C

2.
0O

C

-0
.3

33

l.C
O

O

0
.6

6
7

1
CO

O
 -

0
.3

3
3

-O
.6

66
:'"

-0

.3
33

1.

00
0

0
.6

6
7

-0
.3

33

1.
00

0

0.
66

7

P
rim

ar
y

La
ng

ua
ge

K
ey

A
lic

e

P
yt

ho
n

O
th

e
r

F
ig

ur
e

C
-l

.P
os

t-
te

st
 r

es
ul

ts
 fo

r
pi

lo
t s

tu
dy

.

1.
00

0

-0
.3

33

-0
.3

33

3.
C

3C

•1
.6

67

1.
66

7

1
5

.3
3

4

6
.0

0
3

10
.0

02

13
.3

35

14
.S

6S

6
.6

7
0

7
.6

6
7

1.
0O

2

8
.3

3
4

4
.6

6
8

7
.3

3
4

2.
00

2

4
.6

6
7

2
.0

0
1

0.
66

S

4.
66

7
3.

33
4

4
.6

6
7

3
.0

0
0

3
.0

0
0

3.
00

0

4
.0

0
0

4.
C

0O

0
.0

0
1

-0
.3

33

1.
00

0
3

.0
0

0

2
5

0
3

2
5

0
4

.

2
5

0
5

2
5

0
6

.2
50

7

2
5

0
8

O
ve

ra
ll

 M
ea

n

A
li

ce
 M

ea
n

.

P
yt

ho
n

M
ea

n

-0
.9

9
3

1.
66

7

2
j'V

t.
n.

1.
66

7

0
.3

3
4

3
.0

0
0

1.
76

2

2
.0

0
3

.1
.1

34

0
.6

6
7

0
.6

6
7

0
.6

6
7

0
.6

6
7

-0
.6

S
6

-0
.6

66

0.
76

2

0
.3

3
4

0
.9

3
4

1.
66

7

1.
66

7

Q
.3

34

1.
66

7

-0
.9

39

3,
00

0

1.
S

57

-2
.0

00

1
.6

6
7

'

-0
.9

99

1.
66

7

1.
66

7

3.
C

O
O

1.
66

7

3.
00

0

1.
76

2

2,
66

7

0
.8

6
7

0
.6

6
7

0
.6

6
7

0
.6

6
7

2.
00

0

0.
6S

7

-0
.6

66

0.
76

.2

..
0.

33
4

..,

•9
.6

67

0
.6

6
7

-O
.6

66

-0
.6

6
6

0.
66

7

2.
S

C
0

0
.6

6
7

0
.4

7
7

,•
'1

.0
0

0

•:'
-0

.1
33

-0
.3

33

-0
.3

33

-0
.3

33

-0
.3

33

-0
.3

33

-0
.3

33

-0
.2

3B

0
.0

0
0

-0
.3

33

1.
00

0

1.
00

0

1.
O

0O

1,
00

0

1.
00

0

-0
.3

3
3

0
.8

1
0

0
.3

3
4

1.
00

0

1.
66

7

3
.0

0
0

3
.0

0
0

1.
66

7

1.
S

67

1.
66

7

1.
81

0

1.
16

7

1.
80

0

9
.3

3
6

4
.0

0
4

9
.3

3
6

9
.3

3
6

12
.0

02

5
.3

3
7

9.
33

6

3.
76

4

9
.8

3
6

7
.6

0
3

8
.6

6
7

0
.6

6
S

2.
66

7

6
.0

0
1

2
.0

0
1

1.
33

4

0.
66

3
3.

33
4;

 ̂V
&

fc
SO

l.
4

.6
6

8
3.

33
4;

'>
 •

 •
 i;

33
4.

i

6
,0

0
1

0
.6

6
3

2
.6

6
7

6
.0

0
1

4
,6

6
7

1.
33

4

2
.0

0
2

O
.6

6S

2.
S

67

3
.3

3
5

2
.0

0
1

4.
C

C
0

4
.7

3
9

2.
66

8
2.

35
8

4
.7

5
1

1.
56

3
3

.*
3

7
;

3.
40

2
2

.S
0

1
1.

40
1::

•a
 m

z o X
 n
 o

H

1 H

H

H

W

H

ry
j

G
 r H

O
 r O

H

0
3 H

d
 o

www.manaraa.com

APPENDIX D: PRETEST QUESTION RESPONSES BY QUARTILE FOR
MAIN STUDY

R e s p o n s e %

A

B

C

D

Total

Q l

0 .21

0.15

. . : 0.16

:•: 0.08

0.02

0.03

0.02

0.03

0.02

0.07

0.05

0.05

0.00

0.00

0.02

0 .08

0.9S

Q 2

0.00

0.02

0.00

0.00

0.00

0.02

0.02

0.02

0.23

0.20

i o:is
0.20

0.02

0.02

0.05

0.05

1.00

Q 3

0.00

0.00

0.00

0.02

•': ' ': '0.23

: : > i 0 . 2 0

:0.is
0.13

0.02

0.05

0.07

0.07

0.00

0.00

0.00

0.03

0.98

Q 4

' -X a 0.18

>.v; ; ib .0S

6.03

•.!-,-: 0.00

0.00

0.00

0.00

0.05

0.02

0.03

0.03

0.00

0.05

0.11

0.18

0.20

0.97

Q 5

0.02

0.03

0.03

0.02

0.03

0.03

0.03

0.03

0.03

0.08

0.10

0.15

\:'.--,:o.js

- 'siio
V: 0.07

0 .05

0.95

Q 6

0.02

0.03

O.03

0.11

0.05

0.02

0.11

0.13

0.00

0.00

0.02

0.00

A;.S;*:o;ii
" : : i ioi8
: o.og

0.02

0.98

Q 7

0.00

0.00

0.03

0.02

0.00

0.00

O.OO

0.03

0 .23

•'•;•:.'. 0 .16

: : 0 . 1 S

U".-:'b:ii
0.02

0.08

0.05

0 .08

0.93

Q 8

0.02

0.02

0.05

0.05

0.23

0.13

0.13

o.il
0.00

0.03

0.02

0.05

0.00

0.00

0.02

0.05

0.90

Q 9

'': 0 .21
: . i ;o . i5

7: 6 .08

% .10.05

0.03

0.00

0.03

0.08

0.00

0.02

0.05

0.07

0.00

0.03

0.05

0.03

0.89

Q I O

0.02

0.02

O.OS

0.07

0.03

0.02

0.00

0.00

0.00

0.00

0.00

0.O3

• , o : i 8

:"'?;. bao
• : o . i 6

" V : . 0 .15

0.95

q i i

0.15

' 0 .13

0.08

0.03

0.02

0.00

0.07

0.07

0.07

0.05

0.03

0.13

0.00

0.00

0.02

0.02

0.85

Q 1 2

0.10

0.05

0.07

0.03

0.05

0 .02

-"'••" >: 0 .08

0 .68

0.05

0.08

0.07

0.11

0.02

0.05

0.02

0.03

0.90

Correct Response:

Figure D-l.Proportion of pre-test students who chose each response for questions 1 through 12, divided
into quartiles by score (high to low).

R e s p o n s e %

A

B

C

D

Total

Q l)

0.08

0.10

0.07

0.15

0.00

0.02

0.03

0.05

0.00

O.CO

0.02

0.03

0.16

0 .11

0.11

0.03

0.97

Q 1 4

0.07

0.07

0.13

0.13

0.00

0.02

0.00

0.03

0.15

o.oa
0.07

S.03

O.OO

0.03

0.02

0.05

0.S7

Q 1 5

0.16

0.08

0 .03

0.03

0.05

0.03

0.03

0.02

0.00

0.03

0.07

0.13

0.00

0.07

0.11

0.07

0.92

Q 1 6

0.00

0.05

O.OS

0.05

0.03

0.07

0.08

0.13

0 .11

0.02

O.OO

0.02

0.07

0.05

0.08

0.05

0.89

Q 1 7

0.10

0.03

0.02

0.07

0.10

0 .08

0 .08

0.10

0.02

0.08

0.11

0.07

0.02

0.02

0.02

0.02

0.92

Q 1 8

0.11

0.05

0.02

0.10

0.03

0.02

0.00

0.02

0.02

0.05

0.16

0.08

0.07

0.07

0.05

0.05

0.89

Q 1 9

0.11

0.05

0.03

0.08

0.02

0.02

0.07

0.02

0.03

0.10

0.03

0.08

0.08

0.02

0.05

0.03

0.82

Q 2 0

. 0.18

0.11

0.07

0.16

0.00

0.05

0.07

0.07

0.00

O.OO

0.03

0.00

0.07

0.05

0.03

0.03

0.92

Q 2 1

0.05

0.03

0.02

0.07

0 .15

",'••-. 0.08

0.10

0.07

0.02

0.05

0.03

0.08

0.00

0.02

0.02

0.03

0.80

Q 2 2

0.02

0.03

0.00

0.07

0.03

0.05

0.08

O.OS

0.05

0.02

0.07

0.08

0 .11

0.08

0.07

0.03

0.S7

Q 2 3

0.03

0.05

0.03

0.03

0.05

0.07

0.05

0.08

0.10

0.08

0.11

0.08

0.03

0.00

0.02

0.07

0.89

a 24

0.00

0.03

0.02

0.03

0.02

0.02

0.07

0.10

0.20

0.15

O.OS

0.03

0.00

0.00

0.05

0.08

0.87

Correct Response:

Figure D-2. Proportion of pre-test students who chose each response for questions 13 through 24,
divided into quartiles by score (high to low).

www.manaraa.com

APPENDIX E: POST-TEST QUESTION RESPONSES BY QUARTILE FOR
MAIN STUDY

Response %

A

B

C

D

Total

Q l

• 0.21

0.18

0.18

S; 0.11

0.03

0.03

0.02

0.07

0.00

0.03

0.03

0.02

0.00

0.00

0.00

0.03

0.95

Q 2

0.00

0.00

0.02

0.03

0.00

0.03

0.07

0.07

'~':G.25

yfe.;;;q:21

•w-'-''.dM
M o . 1 3

0.00

0.00

0.07

0.03

1.00

Q 3

0.00

0.00

0.03

0.07

*•'::,'.- 0 .23

0.23

\-'r::i 0.11

0.13

0.00

0.00

0.10

0.03

0.02

0.00

0.00

0.03

0.9S

Q 4

0.18

0.05

o.te
0.02

0.00

0.00

0.03

0.02

0.02

0.05

0.08

0.07

0.05

0.15

0.08

0.16

1.00

Q S

0.03

0.02

0.03

0.03

0.05

0.05

0.07

0.07

0.00

0.07

0.08

0.15

''.. '0:1«
B v t x t i i

' f l«.05

"':V "0 .02

0.98

q e

0.02

0.05

0.10

0.07

0.02

0.05

0.05

0.13

0.00

0.03

0.05

0.03

: 0 2 1

•S-0,11

: 0.05

';"" 0.02

0.9S

Q 7

0.00

0.02

0.03

0.05

0.00

0.03

0.00

0.03

>:: 0.23

'••i 0:15

• i 0.11

•••••• : o . i o

0.02

0 .05

0 .10

0 .08

1.00

Q 8

0.00

0.03

0.03

0.03

••• 0 .25

mo.w
:-;'.----'o.-i«

!";::0.10

0.00

0.03

0.02

0.10

0.00

0.00

0.02

0.03

1.00

Q 9

0.21

0.15

: . . , 0 . 07

:--:JOM

0.00

0 .03

0 .05

0 .05

0 .00

0 .05

0 .05

0 .10

0.02

O.OO

0.05

0 .03

0 .93

q i o

0.02

0.O5

0.05

0.03

0.00

0 .03

0 .02

0.02

0.02

0 .05

0.03

0 .08

n ' S i O , 2 1

'•%:••' OilO

0 . 1 1

'•!• 0 .13

0 .95

Q l l

•-, 0 .18

K - . a i l

0 .13

"''.,,:: 0.05

0.00

0.03

0.05

0.10

0.07

0.08

0.05

0.08

0.00

0.00

0.00

0.02

0.95

q i 2

0.08

0.13

0.05

0.07

0.03

o.o5:

'•f0.08 :

: &03;

0.11

0.03

0.05

0.10

0.02

0.02

0.03

0.05

0.93

Correct Response: [

Figure E-l. Proportion of post-test students who chose each response for questions 1 through 12,
divided into quartiles by score (high to low).

Response %

A

B

C

D

Total

q i 3

0.10

0.13

0.07

0.15

0.00

0.02

0.07

0.03

0.00

0.00

0.02

0.03

0.15

0.10

0.08

0.05

0.98

Q 1 4

0.15

0.08

0.13

0.13

0.00

0.00

0.03

0.00

0.10

0:11

0.05

0.05

0.00

0.02

0.02

0.05

0.92

q «

: 0.15

o.u
0.03

0.05

0.00

0.05

0.03

0.08

0.03

0.02

0.10

0.08

0.03

0.05

0.05

0.05

0.93

q i o

0.00

0.07

0.03

0.10

0.03

0.08

0.08

0.11

0.20

0.00

0.05

0.02

0.00

0.08

0.02

0.02

0.93

q i ?

0.08

0.07

0.05

0.03

0.10

•'0.05

0.07

0.05

0.02

0.08

0.11

0.13

0.05

0.03

0.00

0.05

0.97

Q 1 8

0.05

0.03

0.05

0.10

0.05

0.03

0.10

0.11

0.03

0.05

0.03

0.02

0.10

0.11

0.05

0.02

0.93

q w

0.16

0.10

0.03

o.oa
0.O2

0.02

0.03

0.05

0.02

0.03

0.05

0.07

0.03

0.07

0.08

0.02

0.S5

q 2 0

' ' 0 . 2 0

: : ; - , -o . i l

0.07

0.03

0.00

0.02

0.08

0.10

0.00

0.03

0.03

0.07

0.05

0.03

0.03

0.05

0.90

Q 2 1

0.05

0.05

0.08

0.05

- 0.18

.-'.- o.io
, 0 . 0 3

0.07

0.00

0.02

0.02

0.08

0.00

0.03

0.08

0.03

0.87

q 2 2

0.00

0.05

0.07

0.07

0.03

0.03

0.07

0.03

0.02

0.07

0.07

0.15

0.20

0.08

0.03

0.02

0.97

q 2 3

0.00

0.05

0.07

0.10

0.02

0.08

0.07

0.10

0.21

0.08

0.08

0.02

0.00

0.02

0.02

0.03

0.93

Q 2 4

0.00

0.02

0.00

0.02

0.00

0.07

0.08

0.08

0.23

0.07

0.07

0.03

0.02

0.07

0.05

0.08

0.87

Correct Response:

Figure E-2. Proportion of post-test students who chose each response for questions 13 through 24,
divided into quartiles by score (high to low).

http://-o.il

www.manaraa.com

APPENDIX F: ITEM DISCRIMINATION ANALYSIS FOR PRETEST FOR
MAIN STUDY

Question Number

I tem Facility Total

I tem Facility Top

27%

I tem Facility Bottom

27%

Item Discrimination

Estimated Index o f

I tem Diff iculty

Question Number

Quest ion Category

Q l

0.607

0.875

0.313

0.563

0.594

Q 2

0.S03

0.938

0.750

Q 3

0.738

0.938

0.500

m ...»
0.844 0.719

Q 4

0.295

0.688

0.000

0.688

0.344

Q 5

0.361

0.625

0.188

0.438

0.406

Q 6

0.459

0.750

0.063

0.688

0.406

Q 7

0.672

0.938

0.438

0.500

0.688

Q 8

0.607

0.875

0.438

0.4J8

0.656

Q 9

0.492

0.813

0.188

Q10

0.689

0.750

0.563

q i i

0.393

0.563

0.125

0.625 l l l i l l i l j 0.438

0.500 0.656 0.344

Q12

0.230

0.188

0.313

83
0.250

Q l |Q2 | Q 3

Bosks

Q4 |QS |qs

Logical expressions

Q 7 |Q8 |Q9

Conditionals

Q10 |Q11

For loops

Q 1 2

Array

w/o loop

Index of Discrimination Scale:

Very good

Reasonably good

Marginal

Poor

0.40 and up

0.30 to 0.39

0.20 to 0.29

Below 0.19

Figure F-l.Pre-test item discrimination analysis for questions 1 through 12.

Question Number

Item Facility Total

I tem Facility Top

27%

Item Facility Bottom

27%

Item Discrimination

Estimated Index of

I tem Difficulty

Question Number

Question Category

Q13

0.426

0.688

0.125

0.563

0.406

Q14

0.328

0.563

0.125

0.438

0.344

Q15

0.311

0.625

0.125

0.500

0.375

Q16

0.148

0.43S

0.063

«M

0.250

Q17

0.361

0.375

0.375

Q18

0.230

0.250

0.188

0.375|

Is**
0.219

Q19

0.180

0.313

0.125

Li3
0.219

Q20

0.525

0.6SS

0.625

0.656

Q 2 1

0.393

0.563

0.250

0333

0.406

Q22

0.295

0.438

0.125

Q23

0.377

0.375

0.313

Q24

0.459

0.750

0.125

0 l l j l i i l l l l l 0.625

0.281 0.344 0.438

Q13 |Q14

While loops

Q15 |Q16 |Q17

Functions

Q18

Erifnr.eefiftn

Q19 |Q20 |Q21

Recursion

Q22 |Q23 |Q24

Classes and objects

Index o f Discrimination Scale:

Very good

Reasonably good

Marginal

Poor

0.40 and up

0.30 to 0.39

0.20 to 0.29

Below 0.19

Figure F-2. Pre-test item discrimination analysis for questions 13 through 24.

www.manaraa.com

129

APPENDIX F: ITEM DISCRIMINATION ANALYSIS FOR PRETEST FOR
MAIN STUDY

Reliability

Average Score

Standard Deviation

Standard Error of

Measurement

0.568

11.402

3.626

2.382

Figure F-3. Reliability, average score, standard deviation, and standard error of measurement
statistics for pre-test.

www.manaraa.com

130

APPENDIX G: ITEM DISCRIMINATION ANALYSIS FOR POST-TEST FOR
MAIN STUDY

Question Number

Item Facility Total

Item Facility Top
27%

Item Facility Bottom
27%

Item Discrimination

Estimated Index of
Item Difficulty

Question Number

Question Category

Q l

0.639

0.S75

0.438

0.458

0.556

Q2

0.689

1.000

0.500

0.500

0.750

Q3

0.705

0.938

0.500

0.438

0.719

Q4

0.295

0.688

0.063

0.625

0.375

Q5

0.344

0.625

0.063

0.563

0.344

Q6

0.393

0.875

0.063

0.813

0.469

Q7

0.590

0.938

0.375

0.563

0.656

Q8

0.705

0.93S

0.375

0.563

0.656

Q9

0.508

0.875

0.313

0.563

0.594

Q10

0.557

0.813

0.500

0,3*3=

0.656

Q l l

0.475

0.750

0.188

0.563

0.469

Q12

0.197

0.125

0.125

0.125

Q l |Q2] Q 3

Basics

Q4 |Q5 |Q6

Logical expressions

Q7 |Q8 |Q9

Conditionals

Q10 |Q11

For loops

Q12

Array

w/oloop

Index o f Discrimination Scale:

Very good

Reasonably good

Marginal

Poor M
0.40 and up

0.30to0.39

0.20 to 0.29

Below 0.19

Figure G-l.Post-test item discrimination analysis for questions 1 through 12.

Question Number

Item Facility Total

I tem Facility Top

27%

Item Facility Bottom

27%

Item Discrimination

Estimated Index of

I tem Diff iculty

Question Number

Question Category

Q13

0.377

0.625

0.188

0.438

0.406

Q14

0.311

0.438

0.188

ill
0.313

q i s

0.361

0.625

0.188

0.438

0.406

Q16

0.262

0.750

0.063

0.688

0.406

Q17

0.262

0.375

0.188

Q18

0.279

0.438

0.063

m «
0.281 0.250

Q19

0.197

0.188

0.063

sHll l
0.125

Q20

0.410

0.813

0.125

0.6S8

0.469

Q 2 1

0.377

0.750

0.250

0.500

0.500

Q22

0.328

0.813

0.063

0.750

0.438

Q23

0.393

0.813

0.063

0.750

0.438

Q24

0.393

0.875

0.125

0.750

0.500

Q13 |Q14

While loops

Q15 |Q16 |Q17

functions

Q18

Sc/rwore

Q19 |Q20 |Q21

Recursion

Q22 |Q23 |Q24

Classes and objects

Index of Discrimination Scale:

Very good

Reasonably good

Margina!

Poof

0.40 and up

0.30 to 0.39

0.20 to 0.29

BeiowO.19

Figure G-2.Post-test item discrimination analysis for questions 13 through 24.

www.manaraa.com

131

APPENDIX G: ITEM DISCRIMINATION ANALYSIS FOR POST-TEST FOR
MAIN STUDY

Reliabil i ty

Average Score

Standard Deviation

Standard Error of

Measurement

0.749

10.730

4.5S6

2.297

Figure G-3.Reliability, average score, standard deviation, and standard error of measurement
statistics for post-test.

www.manaraa.com

132

APPENDIX H: CORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR PRETEST FOR MAIN STUDY

100.0

90.0

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0

Correct Response (CR) Percentages

0.1 Q2 Q3 Q4 Q5 Q6 Q7 Qi

Question

• JavaCR%(N = l3)

• Visual Basic CR% |N = 22)

aC++CR%(IM = 26)

Total N = 61

Figure H-l.Correct response percentages for questions 1 through 8 of pre-test.

100.0

90.0

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0

Correct Response (CR) Percentages

1
UavaCR%(N - 13)

I Visual Basic CR%{N = 22)

sC++CR%(N = 26)

Q9 Q10 Q l l Q12 Q13 Q14 Q15 Q16

Question Total N = 61

Figure H-2.Correct response percentages for questions 9 through 16 of pre-test.

www.manaraa.com

133

APPENDIX H: CORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR PRE-TEST FOR MAIN STUDY

Figure H-3.Correct response percentages for questions 17 through 24 of pre-test.

www.manaraa.com

APPENDIX I: CORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR POST-TEST FOR MAIN STUDY

Correct Response (CR) Percentages

i]avaCR%<N = 13)

i Visual Basic CR%{N = 22)

iC++CR%(N = 2&>

Q l Q2 Q3 Q4 Q5 Q6 Q7 QS

Question Total N = 61

Figure 1-1. Correct response percentages for questions 1 through 8 of post-test.

Correct Response (CR) Percentages

Q9 Q10 Q U a i 2 Q13 Q14 Q15 Q16

Question

sJavaCR%(N = 13)

I Visual Basic CR%(N = 22)

;C+ tCR%(N =26)

Total N = 61

Figure 1-2. Correct response percentages for questions 9 through 16 of post-test.

www.manaraa.com

135

APPENDIX I: CORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR POST-TEST FOR MAIN STUDY

100.0

90.0

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0

Correct Response (CR) Percentages

J 1
Q17 Q18 Q19 Q20 Q21 Q22 Q 23 Q24

Question

UavaCR%(N = 13)

I Visual Basic CR % (N = 22)

i:C++CR%(N = 26)

Total N = 61

Figure 1-3. Correct response percentages for questions 17 through 24 of post-test.

www.manaraa.com

136

APPENDIX J: INCORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR PRETEST FOR MAIN STUDY

Question 1 Question 2
50-0

40.0

30.0

20.0 •

10.0

0.0 I
m Java (CFt %

m Visual Basic SCR ^

: C+*ICR %

SO.O

40.O

r°
£ 200

100

0-0

§ JavaICR%

s Visual Basic ICR %

I C*+ICR %

50.0

40.0

r°
2 20.0

10.0

0 0

Question 3 Question 4

a Java ICR %

I Visual Basic ICR0/

»C<»ICR%

60.0

50.0

„ 40.0

| 30.0

"• 20.0

10.0

0.0 - | - & r

ssJava ICR%

K Visual Basic ICR %

-• c** ICR%

60.0

50.0

40.0

30.0

20.0

10.0

0.0

50.0

40.0

r°
£ 20.0

10.0

0.0

Question 5 Question 6

$ JavaICR%

s Visual Basic ICR *

3 iCnCR%

SO.O •

40.0

| 30.0 •

ff 20.0

10.0 -

0.0

3 C

Distracter

Question 7 Question 8

a Java SCR %

l Visual Basic ICR f;

;C»-HCR%

50.0

40.0

E 30.0

t 20.0

10.0

0 0 El 1
3 D

Distracter

C

Distracter

® Java ICR %

a Visual Basic ICR %

i ' C » » I C R %

»Java ICR ",i

3 Visual Basic ICR %

:: C i f ICR %

Figure J-l. Incorrect response percentages for questions 1 through 8 of pre-test where:
Java N = 13, Visual Basic N = 22, C++ N = 26, Total N = 61.

www.manaraa.com

137

APPENDIX J: INCORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR PRETEST FOR MAIN STUDY

Question 9
50 .0 •;

40-0

S 30.0
01

20.0

10.0

0.0 J
K Java ICR %

B Visual Basic ICR %

C++ICR %

Question 11
70.0

60.0

50.0

40.0

30.0 •

20 0

10.0 —

0.0 1 ~ I.
ss Java ICR %

@ Visual Basic ICR "/

• I C H |CR%

Question 10
50.0

4 0 0

30.0

20.0

10.0

0.0

Question 12
50.0

40.0

E 30.0

S. 20.0

10.0

0.0

<• i l l • I.

g Java ICR %

i Visual Basse ICR %

a C++ICR %

s Java ICR'X

BVisua! Basic ICR "<•

•: C n ICR%

Question 13 Question 14
5 0 . 0 •

4 0 - 0 •

r°
S 20.0

10.0

0.0

50.0 • —

40.0 - -

c 30.0

S 20.0 •

10.0

i i Visual Basic ICRu/

i: C4«ICR%

Question 15

0.0 I i l L

a Java ICR %

@ Visual Basic ICR '>

-"CM-ICR %

50.0

40.0

| 30.0

£ 20.0

10.0

0.0

50.0

40.0

| 30.0

2 20.0

10.0

0 0

1-
• _

B D

Distracter

Question 16

l-i-i

SJavalCP'X-

B Visual Basic ICR "t

g? Java ICR *K

8 Visual Basic ICR'ft

•• C*« ICR %

Figure J-2. Incorrect response percentages for questions 9 through 16 of pre-test where:
Java N = 13, Visual Basic N = 22, C++ N = 26, Total N = 61.

www.manaraa.com

138

APPENDIX J: INCORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR PRE-TEST FOR MAIN STUDY

Question 17

s Java ICR %

a Visual Basic ICR %

;; C++ ICR %

Question 19

m Java ICR %

m Visual Bas:c ICR %

- . C M ICR%

Question 18
50.0

40.0 •

30.0

20.0

10.0 •

0.0

§ Java ICR.^

a Visual Basic ICR %

Question 20
5 0 0

10.0

30.0

2 0 0

10.0

0.0

C

Distracter

sa Java ICR %

BVisualBasic ICR %

!.'. C-I-+ ICR %

Question 22

m Java ICR %

a Visual Basic ICR?;

i i C++ ICR %

50.0 -,-•

40.0 -I—

g 30.0 f -
S
S 20.0 1

a JavaICR%

m visual Basic ICR %

*>OHCR!C

50.0

40.0 - j —

30.0 -

20.0

IO.O :

0.0 ' I

Question 23 Question 24

mJavaICR %

•3 Visual Bas c ICR ?

0+1CR5-;

50.0

40 0

30.0 •;

20.0 ••••

10.0 I
3! Java XR %

m Visual Basic ICR %

C-t+ICRK

Figure J-3. Incorrect response percentages for questions 17 through 24 of pre-test where:
Java N = 13, Visual Basic N = 22, C++ N = 26, Total N = 61.

www.manaraa.com

139

APPENDIX K: INCORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR POST-TEST FOR MAIN STUDY

Figure K-l.Incorrect response percentages for questions 1 through 8 of post-test where:
Java N = 13, Visual Basic N = 22, C++ N = 26, Total N = 61.

www.manaraa.com

APPENDIX K: INCORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR POST-TEST FOR MAIN STUDY

Question 9
50.0

40.0

^ JavaICR %

g Visual Basic !CR%

s> C<» ICR %

Question 10
50.0

40.0

I 300

S 20.0

10.0

0.0

Si Java ICR %

B Visual Basic ICR %

»On-!CR%

Question 11 Question 12
50.0

40.0

30.0

20.0

10.0

0.0

s 3 0 0 -Mra—I
s Java ICR %

I Visual Basic ICR %

- C M CR%

Question 13 Question 14

I g Java ICR %

S Visual Basic ICR %

>: CH ICR %

60.0 •

5o.o m

10.0

0.0

is Java ICR %

m Visual Basic ICR %

. iCn- ICRI i

s JavaICR %

a Visual Basic ICR%

t i l ICH%

Question 15 Question 16
so.o

40.0 •:

c 30.0 •

20.0

10.0

0.0 I
g Java ICR %

£ Visual Basic !CR%

? C « ICR %

20.0

10.0

i l
B D

Distracter

gJavaICR%

a Visual Basic ICR %

:Cn-ICR%

Figure K-2.Incorrect response percentages for questions 9 through 16 of post-test where:
Java N = 13, Visual Basic N = 22, C++ N = 26, Total N = 61.

www.manaraa.com

141

APPENDIX K: INCORRECT RESPONSE PERCENTAGES BY LANGUAGE
GROUP FOR POST-TEST FOR MAIN STUDY

Question 17

SI Java ICR %

S Visual Basic ICH %

« C « I C R %

Question 18

s Java ICR %

s Visual Basic ICR %

s C»* ICR %

60.0

50.0

40.0

30.0

20.0 •

10.0 •

Question 19 Question 20
50-0

40.0

53 Java ICR %

£ Visual Basic ICR ?<

a CM-ICR % i I I
a Java ICR «

s Visual Basic iCR%

500

40.0

Question 21 Question 22

J 'li
& Java ICR %

a Visual Basic ICR°/

:. GtHCR%

50.0

40.0

c 30.0

it 20.0 •

10.0 -

0.0 II
C

Distracter

sJavaICR%

1 visual Basic ICK %

. On ICR %

50 0

40.0

30.0

2 0 0

10.0

0.0

Question 23 Question 24

§ Jav3 ICR %

is Visual Basic CR Si

a C*<ICR «

50.0

4O.0

1 30.0

£ 20.0

10.0

0.0 I
5 Java ICR X

s Visual Basic ICR %

• 0-MCR%

Figure K-3.Incorrect response percentages for questions 17 through 24 of post-test where:
Java N = 13, Visual Basic N = 22, C++ N = 26, Total N = 61.

www.manaraa.com

APPENDIX L: DEMOGRAPHIC SURVEY DATA FOR MAIN STUDY

ID_Number Completed_ language_ Aeademic_ Major Gender Ethnicity Age_Range lmmediate_ SAT_Math_ ACT_lVlath_

: Study Class Level College_Entry Score Score

CS04113-5

CS04113-2

CS04113-1

CS04113-3

C504113-6

CS04113-4

CS04113-10

CS04113-8 \l

CS04113-9

CS04113-7

CS04114-17

CS04114-18

CS04114-24

CS04114-23

ID_Number Alice Basic

1 Transfer

1 Freshman

1 Junior

1 Sophomore

1 Transfer

1 Other

1 Junior

} 1 junior .

1 Sophomore

1 Transfer

1 Freshman

1 Freshman

1 Freshman

1 Freshman

cs
cs
cs
cs
cs
N/A

CS

CS .

:cs
cs
cs
cs
cs
cs

C C_PlusPlus C_Sharp Cobol HI

M

M

M

M

M

M

M

M

M

M

M

M

M

M

m l IDL

Other

Caucasian

Asian (non

Caucasian

Caucasian

Xaucasian

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Indian}

Java JavaScript

20

22-30

20

22-30

22-30

30*

21

21

20

;22-30

18

19

19

18

Pascal Perl PHP

V

N

y

Y

V

Y

Y

Y

Y

Y

Y

Y

Y

Y

Python

999

999

999

500

999

680

999

999

660

999

640

550

99

99

99

99

99

99

99

99

99

99

99

99

660 31 (Overall)

700

SQL Verilos_HDL Visual.

99

Basic

CS04113-5

CS04113-2

CS04113-1

CS04113-3

CS04113-6

CS04113-4

CS04113-10

CS04113-8

CS04113-9

CS04113-7

CS04114-17

CS04114-18

CS04114-24

CS04114-23

0

0

0

3

0

0

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

3

1

0

0

1

2

0

0

0

3

0

0

0

0

3

0

3

0

3

0

0

3

0

3

3

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0̂

0

0

5

0

0

0

0

0

0

0

0

0

0

2

0

0

0

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

2

2

2

2

2

3

2

2

5

4

2

3

3

0

2

0

0

0

0

0

0

0

2

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure L-l.Demographic information for the 14 Java students; the highlighted records
represent students who only completed the first part of the study.

www.manaraa.com

APPENDIX L: DEMOGRAPHIC SURVEY DATA FOR MAIN STUDY

:lD_Number Completed_ Language_ Academic_ Major Gender Ethnicity Age_Range lmmediate_ SAT_Math_ ACT_Math_

Study Class Level College_Entry Score Score

CS04141-22

CS04141-25

CS04141-26

CS04141-28

CS04141-31

CS04141-27

CS04141-24

CS04141-23

CS04141-29 :

CS04141-18

CS04141-17

CS04141-21

CS04141-20

CS04141-16

CS04141-15 \

CS04141-10

CS04141-4

CS04141-1

CS04141-13

CS04141-14

CS04141-12

CS04141-3

CS04141-5

CS04141-8

CS04141-11

CS04141-2

CS04141-6

CS04141-7

CS04141-9

ID_Number Alice

1

1

1

0

0

1

0

0

1

0

1

0

1 :

l :

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

Basic C

2 junior

2 Freshman

2 Senior

2 Junior

2 Senior

2 Senior

2 Senior

2 Sophomore

2 Senior

2 Junior

2 Sophomore

2 junior

2 Junior

2 Junior

2 Junior

2 Junior

2 Freshman

2 Transfer

2 Freshman

2 Freshman

2 Sophomore

2 junior

2 Freshman

2 Junior

2 Junior

2 Transfer

2 Junior

2 Freshman

2 Senior

MIS

MIS

MIS

MIS

MIS

MKT, MIS

MIS

MIS

MIS

MIS

MIS

MIS

MIS

MIS

MIS

MIS

MIS

MIS

MIS

MIS

MIS

MIS, RTF

MIS

MIS

MIS

LA

MIS

MIS

MIS

C_PlusPlus C_Sharp Cobol Htm

F

M

M

M

M

F

M .

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

F

M

M

M

M

M

M

IDL

African American

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Other

Other

Hispanic

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Other

Caucasian

Caucasian

Caucasian

Caucasian

Asian (non-Indian}

Caucasian

Caucasian

Hispanic

Caucasian

Caucasian

Hispanic

Asian (non-Indian)

Caucasian

20

19

22-30

21
22-30

22-30

2 0 :

19 B '

22-30

20 :

20

22-30

22-30

20

20

21

18

21

19

18

20

21

18

20

21

21

21

18

21

Java JavaScript Pascal Perl PHP

V

Y

Y

V

Y

Y

Y

Y

Y

Y

N

N

N

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

999

660

999

550

680

999

999

;999

1150

999

999

999

999

999

999

999

600

999

660

610

999

999

600

500

999

999

610

999

999

Python SQL Verilog_HDL Visual.

99 j

99|

99j

99!

99!

99>

99J
99,

99

99

99

99

99

99

99

16

99

99

99

99

99

99

99

99

99

99

99

99

99

.Basic i

CS04141-22

CS04141-25

CS04141-26

CS0M41-28

CS04141-31

CS04141-27

CS04141-24

CS04141-23

CS04141-29

CS04141-1E

CS04141-17

CS04141-21

CS04141-20

CS04141-16

CS04141-15

CS04141-10

CS04141-4

CS04141-1

CS04141-13

CS04141-14

CS04141-12

CS04141-3

CS04141-5

CS04141-8

CS04141-11

CS04141-2

CS04141-6

CS04141-7

CS04141-9

0

0

0

0

0

0

0

0

0

0

0

0

0

2

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

3

0

3

0

2

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

3

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

2

0

0

0

1

0

3

0

2

3

0

0

3

0

0

0

2

0

3

0

0

2

0

0

2

3

2

3

0

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

0

3

0

0

0

0

0

0

0

0

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

1

0

0

0

3

0

0

1

0

1

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

3

3

3

5

3

3

3

3

2

3

4

3

2

3

3

3

3

3

3

3

3

1

3

3

2

4

3

3

Figure L-2.Demographic information for the 29 Visual Basic students; the highlighted records
represent students who only completed the first part of the study.

www.manaraa.com

APPENDIX L: DEMOGRAPHIC SURVEY DATA FOR MAIN STUDY

144

ID_Number Completed_

CS04103-2

CS04103-21

CS04103-15

CS04103-6

JCS04103-5

;CS041037

CS04103-8

!CS04103-3

JCS04103-23

ICS04103-4

CS04103-19

;CS04103-9

CS04103-1

|CS04103-14

;CS04103-11

•CS04103-10

CS04103-17

CS04103-12

CS04103-16

XS04103-22

;CS04103-20

CS172-1

CS172-2

SE103-1

CS132-1

CS132-2

; ID_Number

:CS04103-2

CS04103-21

CS04103-15

CS04103-6

CS04103-5

CS04103-7

CS04103-8

CS04103-3

CS04103-23

;CS04103 4

^CS04103-19

CS04103-9

CS04103-1

CSO4103-14

CSO4103-11

CS04103-10

CS04103-17

!CS04103-12

:CS04103-16

;CS0410322

CS04103-20

CSI72-1

|CS172-2

:SE103-1

CS132-1

CS132-2

Study

Alice Basic

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

2

0

1

0

0

0

0

0

0

0

0

0

0

0

0

-anguage_ Aeademic_

Class Level

3 Freshman

3 Freshman

3 Freshman

3 Freshman

3 Freshman

3 Freshman

3 Freshman

3 Freshman

3 Freshman

3 Freshman

3 Freshman

3 Freshman

3 Freshman

3 Freshman

3 Freshman

3 Freshman

3 Senior

3 Freshman

3 Senior

3 Freshman

3 Freshman

3 Freshman

3 Freshman

3 Freshman

3 Senior

3 Freshman

Major

ME

ECE

ME

ECE

ECE

ME

ME

ME

ECE

ECE

ME

ME

ECE

ME

ME

ECE

MATH, PHYS

ME

PHYS

ECE

ECE

CS

CS

SE

MATH

MATH, ECON

C C_PlusPlus C_Sharp Cob

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

3.

3;

2

2

1

1

2

3

2

2

3

2

3

3

3

2

1

3

2

2

3

3

3

3

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

ol H t m l

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Gende

F

M

M

M

M

M

M

M

M

M

M

M

M

M

F

F

F

M

M

M

M

M

M

M

M

M

Ethnici ty

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

African American

Caucasian

Caucasian

Asian (non

Caucasian

Caucasian

Asian (ind

Caucasian

IDL Java JavaScri

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

3

0

0

0

0

0

0

0

0

0

3

-fndian

an]

Age_Range

19

19

19

18

IS

19

19

18

18

19

13

19

18

19

19

19

22-30

IS

21

19

IS

) 19

IS

18

22-30

IS

at Pascal Perl PHP

0

2

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

3

1

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

lmmediate_

College_Entry

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Py th

SAT_Math_ ACT. M a t h _

Score ;Score

999

670

710

620

560^

999

780

720

680

630

700

710:

550 :

690

680

670

690

690

999

680

999

640

999

740

710

999

o n SQL Veri log_HDL Visual

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

99

99

99

99

99

99

99

99

99

99

99

99

99

99

99

99

99

99

99

99

99

99

99

99

34

99

_Basic

0

0

0

0

0

0

0

0

0

0

0

0

0

1

3

0

3

0

3

0

0

0

0

0

2

2

Figure L-3.Demographic information for the 26 C++ students; all of the C++ students
completed both parts of the study.

www.manaraa.com

P
ro

je
ct

 T
it

le
:

A
n

In
ve

st
ig

at
io

n
of

tb
c

Im
pa

ct
 o

f
D

is
pa

ra
te

 T
ea

ch
in

g
A

pp
ro

ac
he

s
on

 S
tu

de
nt

 L
ea

rn
in

g
of

 I
nt

ro
du

ct
or

y
P

ro
gr

am
m

in
g

C
on

ce
pt

s

Pr
oj

ec
t

In
vc

st
if

if
up

rs
:

R
ob

er
t

B
, A

il
en

,
PI

;
W

an
da

 M
.

K
un

kl
o,

 C
o-

PI

D
em

og
ra

ph
ic

Su

rv
ey

T
hi

s
su

rv
ey

 a
sk

s
yo

u
to

 p
ro

\H
ds

 b
ac

kg
ro

un
d

in
fo

rm
at

io
n

as
 p

ar
t

of
 th

e
st

ud
y

in
 w

hi
ch

 y
ou

 h
av

e
ag

re
ed

 t
o

pa
rt

ic
ip

at
e,

 P
le

as
e

an
sw

er
 t

he
 q

ue
st

io
ns

 a
s

ho
ne

st
ly

 a
nd

 n
s

ac
cu

ra
te

ly
 a

s
po

ss
ib

le
,

Y
ou

r
an

sw
er

s
w

ill
 b

e
ke

pt
 c

on
fi

de
nt

ia
l.

I)

E
nt

er
 t

he
 i

de
nt

if
ic

at
io

n
nu

m
be

r
(1

0)
 t

ha
t

yo
u

ha
ve

 b
ee

n
.ji

ve
n:

2)

W
ha

t
is

 y
ou

r
ac

ud
em

ic
 l

ev
el

?

[
•

Fr
es

hm
an

|

O
'j

S
op

ho
m

or
e

j
D

j

.fa
nS

oi
-

~
7

J
^

T
 S

en
io

r.
..

'
'\Q

j

T
ra

ns
fe

r
[T

J_

O
th

er
 (

pl
ea

se
 s

pe
ci

fy
)

'[

3)

W
ha

t
is

 y
ou

r
m

aj
or

 a
re

a
of

 s
tu

dy
'?

4)

W
ha

t
is

 y
ou

r
ge

nd
er

?

f
Q

I

M
al

e
|

D

1
F

em
al

e

5)

W
ha

t i
s

yo
ur

 e
th

ni
ci

ty
?

D
 a a

A
si

an
 (

no
t

fr
om

 I
nd

ia
n

su
bc

on
ti

ne
nt

)
C

au
ca

si
un

H

is
pa

ni
c

P • •

A
s;

an
 (

fr
om

 I
nd

ia
n

su
bc

on
ti

ne
nt

)
A

fi
ic

an
 A

m
er

ic
an

O

th
er

 o
r

m
ix

ed

6)

W
ha

t
is

 y
ou

r
ng

c
(r

an
ge

)?

iC

;c

i?

I
a

|
is

i

a
21

-3
0

ID

19

I
a

12
0

1
D

 I
 2

1
!

30
 +

i

7)

D
id

 y
ou

 e
nt

er
 c

ol
le

ge
 r

ig
ht

 a
ft

er
 c

om
pl

et
in

g
hi

gh
 s

ch
oo

l1;

r
a

jV
e

s
T5

"T
N

o~

8)

F
ro

m
 t

he
 la

ng
ua

ge
s

li
st

ed
 b

el
ow

. p
le

as
e

in
di

ca
te

 t
ho

se
 w

it
h

w
hi

ch
 y

ou
 h

av
e

pr
og

ra
m

m
in

g
ex

pe
ri

en
ce

 (
pl

ea
se

 c
he

ck
 a

il
 t

ha
t

ap
pi

y)
.

0 D

U

A
li

ce

Ja
va

Sc
ri

pt

• D

B
as

ic

Pa
sc

al

D

D

O
th

er
 l

an
it

ii
as

e
f p

le
as

e
sp

ec
if

y)

C

Pe
rl

• D

C

*+

Py
th

on

D
 •

Ja
va

V

is
ua

l
B

as
ic

9)

T
hi

s
qu

es
ti

on
 r

ef
er

s
ba

ck
 t

o
ti

ue
st

io
n

#8
. F

or
 th

os
e

la
ng

ua
ge

s
w

it
h

w
hi

ch
 y

o
u

in
di

ca
te

d
yo

u
ha

ve
 p

ro
gr

am
m

in
g

ex
pe

ri
en

ce
, p

le
as

e
sp

ec
if

y
ho

w
 m

uc
h

us
in

g
th

e
sc

al
e

th
at

 a
pp

ea
rs

 '
be

lo
w

.

I 2
'

3 4 5

Sl
ig

ht
 (

ca
n.

re
ad

 c
od

e;
 k

no
w

 a
 b

it
 a

bo
ut

 t
he

 I
nn

gu
aK

e)

S
om

e
(h

av
e

tr
ie

d
to

 w
ri

te
 p

rO
R

ro
in

s
in

 th
is

 l
an

gu
ag

e)

G
oo

d
(h

av
e

ha
d

pr
oK

ra
tn

m
sn

g
co

ur
se

s
in

 th
is

 l
an

gu
ag

e)

A
P

(t
oo

k
an

d
cu

ss
ed

 A
P-

le
ve

l
pr

ot
fr

ar
nm

in
H

 c
ou

rs
es

 i
n

th
is

 l
an

gu
ag

e)

B
et

te
r

(w
or

ke
d

•-
 e

.R
.:

su
m

m
er

s
-

as
 a

 p
ro

gr
ai

ni
ne

r
us

in
g

th
is

 l
an

gu
ag

e)

La
ng

ua
ge

A

lic
e

Ja
va

 S
er

ia
l

Sc
al

e
Lf

ln
ei

ia
sc

Ba

sic

Pa
sc

al

Sc
al

e

O
th

er
 lf

ui
ati

n.e
e

(p
le

as
e

sp
ec

ify
)

La
ng

ua
ge

C

Pe

rl

Sc
al

e
Lr

m
eu

flE
c

o*

Pv
tb

on

Su
sie

Lm

isu
H

EC

Ja
vd

V

iiu
al

 B
as

is

Sc
al

e

i 0
}

If
 y

ou
 t

oo
k

th
e

S
A

T
, w

ha
t

w
as

 y
ou

r
S

A
T

 M
at

h
sc

or
e?

 (
N

ot
e:

 I
f

yo
u

do
 n

o
t

re
ca

ll
,

or
 d

o
no

t
w

is
h

to
 a

ns
w

er
, y

o
u

m
ay

 l
ea

ve
 t

hi
s

qu
es

ti
on

 b
la

nk
.)

13
)

If
 y

ou
 t

oo
k

th
e

A
C

T
,

w
ha

t w
as

 y
ou

r
A

C
T

M
at

h
sc

or
e?

 (
ty

ot
e:

 I
f y

ou
 d

o
no

t r
ec

al
l,

or
 d

o
no

t
w

is
h

to
 a

ns
w

er
, y

o
u

m
ay

 le
av

e
th

is
 q

ue
st

io
n

bl
an

k.
)

Pa
ge

 2
 o

i 2

> H

O

X
 o

w
 o

o
 a o CJ

< O

5»

t/5

H

G

O

F
ig

ur
e

M
-l

. D
em

og
ra

ph
ic

 s
ur

ve
y,

 p
ag

es
 1

 a
nd

 2
.

http://lfuiatin.ee

www.manaraa.com

P
ro

je
ct

 T
it

le
:

A
n

In
ve

st
ig

at
io

n
of

 th
e

Im
pa

ct
 o

f
D

is
pa

ra
te

 T
ea

ch
in

g
A

pp
ro

ac
he

s
on

 S
tu

de
nt

 L
ea

rn
in

g
of

 I
nt

ro
du

ct
or

y
P

ro
gr

am
m

in
g

C
on

ce
pt

s

Pr
oj

ec
t

In
ve

st
ig

at
or

}:
 R

ob
er

t
B

.
A

de
n,

 P
I;

 W
an

da
 M

.
K

un
kl

e,
 C

o-
PI

A
lt

it
ud

e
-S

un
-e

y

T
hi

s
su

rv
ey

 a
sk

s
yo

u
to

 r
es

po
nd

 t
o

a
se

ri
es

 o
f

st
at

em
en

ts
 t

o
ga

in
 i

ns
ig

ht
 i

nt
o

yo
ur

 a
tt

it
ud

e-
to

w
ar

d
co

m
pu

te
r

pr
og

ra
m

m
in

g
ar

id
 c

om
pu

te
r

sc
ie

nc
e

in
 g

en
er

al
.

P
le

as
e

no
te

 th
at

 y
ou

r
an

sw
er

s
w

ill
 b

e
ke

pt
 c

on
fi

de
nt

ia
l.

In
st

ru
ct

io
ns

E
nt

er
 t

he
 i

de
nt

if
ic

at
io

n
nu

m
be

r
(I

D
)

th
at

 y
ou

 h
ev

e
be

en
 g

iv
en

:

I
1

Fo
r

ea
ch

 o
f

th
e

st
at

em
en

ts
 t

ha
t

fo
llo

w
;

1.

R
ea

d
th

e
st

at
em

en
t.

2.

C
on

si
de

r
th

e
cl

ag
re

e
to

 w
hi

ch
 y

ou
 a

gr
ee

 o
r

di
sa

gr
ee

 w
ith

 t
he

 s
ta

te
m

en
t.

3.

Pi
ec

e
a

ch
ec

km
ar

k
in

 t
he

 b
ox

 u
nd

er
 t

he
 la

be
l

th
at

 m
os

t
cl

os
el

y
re

fl
ec

ts
 y

ou
r

ag
re

em
en

t
or

di

sa
gr

ee
m

en
t

w
id

i
th

e
st

at
em

en
t.

P
le

as
e

ke
ep

 in
 m

in
d:

-

T
he

re
 &

'C
 n

o
ri

gh
t

or
 w

ro
ng

 a
ns

w
er

s,
 s

o
do

n'
t

be
 a

fr
ai

d
to

 r
es

po
nd

 h
on

es
tl

y.

-
M

ov
e

qu
ic

kl
y

th
ro

ug
h

th
e

su
rv

ey
.

~
C

om
pl

et
e

ai
l

of
 th

a
it

em
s.

1 2.

3,

4.

5,

6.

7.

I p
la

n
to

 m
aj

or
 i

n
co

m
pu

te
r

sc
ie

nc
e.

G
en

er
al

ly
 I

 h
ov

e
fe

lt
se

cu
re

 a
bo

ut

at
te

m
pt

in
g

co
m

pu
te

r
pr

og
ra

m
m

in
g

pr
ob

le
m

s

I a
m

 s
ur

e
]

co
ul

d
do

 a
dv

an
ce

d
w

or
k

in
 c

om
pu

te
r

sc
ie

nc
e.

I
am

 s
ur

e
th

at
 1

 c
an

 l
ea

rn

pr
og

ra
m

m
in

g.

I t
hi

nk
 t

 c
ou

ld
 h

an
dl

e
m

or
e

di
ff

ic
ul

t
pr

og
ra

m
m

in
g

pr
ob

le
m

s.

I
ca

n
ge

t g
oo

d
gr

ad
es

 in
 c

om
pu

te
r

sc
te

nc
e.

I h
av

e
a

lo
t o

f
se

lf
-c

on
fi

de
nc

e
w

he
n

it
co

m
es

 t
o

pr
og

ra
m

m
in

g.

St
ro

ng
ly

ag

re
e

D
 a a D

D

D

P

A
gr

ee

D

D
 a Q

D

D
 a

N
eu

tr
al

D

D

D

0 D

D

D

D
is

ag
re

e

a a D

D
 a a D

St
ro

ng
ly

di

sa
gr

ee

D
 • D

D

D

D
 a

P
ag

e!
 o

f3

F
ig

ur
e

N
-l

.A
tt

it
ud

e
su

rv
ey

, p
ag

es
 1

 a
nd

 2
.

8' ' 10
.

11
.

12
.

13
.

14
.

15
,

16
.

17
.

IS
.

19
.

50
.

21
.

22
,

23
,

24

25
.

I'm
 n

o
go

od
 a

t
pr

og
ra

m
m

in
g.

I d
on

't
th

in
k

I c
ou

ld
 d

o
ad

va
nc

ed

co
m

pu
te

r
sc

ie
nc

e

I'm
 n

ot
 th

e
ty

pe
 to

 d
o

w
el

l i
n

co
m

pu
te

r
pr

og
ra

m
m

in
g.

Fo
r

so
m

e
re

as
on

 e
ve

n
th

ou
gh

 I
 w

or
k

ha
rd

 a
t i

t,
pr

og
ra

m
m

in
g

se
em

s
un

us
ua

lly
 h

ar
d

fo
r

m
e.

M
os

t
su

bj
ec

ts
 1

 c
an

 h
an

dl
e

O
.K

.,
bu

t
I

ha
ve

 a
 k

na
ck

 f
or

 f
lu

bb
in

g
up

pr

og
ra

m
m

in
g

pr
ob

le
m

s.

C
om

pu
te

r
sc

ie
nc

e
ha

s
be

en
 m

y
w

or
st

su

bj
ec

t.

It
 w

ou
ld

 m
ak

e
m

e
ha

pp
y

to
 b

e
re

co
gn

iz
ed

 a
s

an
 e

xc
el

le
nt

 s
tu

de
nt

 in

co
m

pu
te

r
sc

ie
nc

e.

,

I'd
 b

e
pr

ou
d

to
 b

e
th

e
ou

ts
ta

nd
in

g
st

ud
en

t
in

 c
om

pu
te

r
sc

ie
nc

e.

I'd
 b

e
ha

pp
y

to
 g

et
 to

pg
ra

de
s

in

co
m

pu
te

r
sc

ie
nc

e.

It
 w

ou
ld

 b
e

re
al

ly
 g

re
at

 to
 w

in
 a

pr

iz
e

in
 c

om
pu

te
r

sc
ie

nc
e.

B
ei

ng
 f

irs
t

in
 ft

 pr
og

ra
m

m
in

g
co

m
pe

tit
io

n
w

ou
ld

 m
ak

e
m

e
pl

ea
se

d.

B
ei

ng
 r

eg
ar

de
d

as
 s

m
ar

t
in

 c
om

pu
te

r
sc

ie
nc

e
w

ou
ld

 b
e

a
gr

ea
t t

hi
ng

.

W
in

ni
ng

 a
 p

ri
ze

 in
 c

om
pu

te
r

sc
ie

nc
e

w
ou

ld
 m

ak
e

m
e

fe
et

 u
rt

pl
ea

sa
nd

y
co

ns
pi

cu
ou

s.

Pe
op

le
 w

ou
ld

 th
in

k
I

w
as

 s
om

e
ki

nd

of
 a

 n
er

d
if

f
go

t .
'V

s
in

 c
om

pu
te

r
sc

ie
nc

e.

If
 1

 h
ad

 g
oo

d
gr

ad
es

 in
 c

om
pu

te
r

sc
ie

nc
e.

 I
w

ou
ld

 tr
y

to
 h

id
e

it.

If
 I

 g
ot

 th
e

hi
gh

es
t g

ra
de

 in
 c

om
pu

te
r

sc
ie

nc
e

I'd
 p

re
fe

r
no

 o
ne

 k
ne

w
.

It
 w

ou
ld

 m
ak

e
pe

op
le

 li
ke

 m
e

le
ss

 if

I w
er

e
3

re
al

ly
 g

oo
d

co
m

pu
te

r
sc

ie
nc

e
st

ud
en

t.

I
do

n'
t l

ik
e

pe
op

le
 to

 th
in

k
I'm

 s
m

ar
t

in
 c

om
pu

te
r

sc
io

nc
e.

St
ro

ng
ly

ag

re
e

D

D

D

D

D

D

D
 • a a a 0 D
 a a a D

D

A
gr

ee

D

D
 • D
 a D
 D

D
 a a a D

D

Q
 • D

D
 a

N
eu

tr
al

D
 a 0 D
 a a a D

D
 • • 0 p o D
 • D

 a

D
is

ag
re

e

D
 • a D
 • D

D

D

D

D
 • D
 a 0 D

D

D

D

St
ro

ng
ly

di

sa
gr

ee

• • D

D
 a D

P D
 • a a a a a a D

p a

Pa
ce

 2
 o

f
3

www.manaraa.com

26
.

27
.

28
.

29

30
.

31
.

32
.

33
.

34

35
.

36
.

37
.

38
.

39
.

"0
,

Fe
m

al
es

 a
re

 a
s

go
od

 a
s

m
al

es
 a

t
pr

og
ra

m
m

in
g.

St
ud

yi
ng

 c
om

pu
te

r
sc

ie
nc

e
is

 ju
st

 a
s

ap
pr

op
ri

at
e

fo
r

w
om

en
 a

s
fo

r
m

en
.

I w
ou

ld
 t

ru
st

 a
 w

om
an

 ju
st

 a
s

m
uc

h
as

 I
 w

ou
ld

 tr
ea

t
a

m
an

 to
 f

ig
ur

e
ou

t
im

po
rt

an
t p

ro
gr

am
m

in
g

pr
ob

le
m

s.

W
om

en
 c

er
ta

in
ly

 a
re

 l
og

ic
al

 e
no

ug
h

to
 d

o
w

el
l

in
 c

om
pu

te
r

sc
ie

nc
e.

it'
s

ha
rd

 t
o

be
lie

ve
 a

 fe
m

al
e

co
ul

d
be

a

ge
ni

us
 i

n
co

m
pu

te
r

sc
ie

nc
e.

It
 m

ak
es

 s
en

se
 t

ha
t t

he
re

 a
re

 m
or

e
m

en
 t

ha
n

w
om

en
 in

 c
om

pu
te

r
sc

ie
nc

e.

1
w

ou
ld

 h
av

e
m

or
e,

 fa
ith

 i
n

th
e

an
sw

er
 f

or
 a

 p
ro

gr
am

m
in

g
pr

ob
le

m

so
lv

ed
 b

y
a

m
an

 th
an

 a
 w

om
an

.

W
om

en
 w

ho
 e

nj
oy

 s
tu

dy
in

g
co

m
pu

te
r

sc
ie

nc
e

ar
e

a
bi

t
pe

cu
lia

r.

I'l
l

ne
ed

 p
ro

gr
am

m
in

g
fo

r
m

y
fu

tu
re

w

or
k

1
st

ud
y

pr
og

ra
m

m
in

g
be

ca
us

e
1

kn
ow

bo

w
 u

se
fu

l
it

is
.

K
no

w
in

g
pr

og
ra

m
m

in
g

w
ill

 h
el

p
m

e
ea

rn
 a

 li
vi

ng
.

C
om

pu
te

r
sc

ie
nc

e
is

 a
 w

or
th

w
hi

le

an
d

ne
ce

ss
ar

y
su

bj
ec

t.

I'l
l

ne
ed

 a
 fi

rm
 m

us
re

ry
 o

f
pr

og
ra

m
m

in
g

fo
r

m
y

fu
tu

re
 w

or
k.

I
w

ill
 u

se
 p

ro
gr

am
m

in
g

in
 m

an
y

w
ay

s
th

ro
ug

ho
ut

 :
ny

 l
if

e.

Pr
og

ra
m

m
in

g
is

 o
f

no
 r

el
ev

an
ce

 to

ra
y

lif
e.

St
ro

ng
ly

ag

re
e

• a a a a a a a a a D
 a D

D

D

A
gr

ee

a D
 • D

D

D
 a a D

D
 a a a • a

N
eu

tr
al

D
 a D

D

D
 a 0 D

D
 • • D
 a D
 a

D
is

ag
re

e

a a a a D
 a • a a a D
 • D
 a a

St
ro

ng
ly

di

sa
gr

ee

a a a a • a D
 • D

D

D

D

D

D

D

F
ig

ur
e

N
-2

. A
tti

tu
de

 s
ur

ve
y,

 p
ag

e
3.

> H

Z

O

X
 z > H

H

H

d
 o

d
 <
!

O

90

Z

H

d
 o

4^

www.manaraa.com

P
ro

je
ct

 T
it

le
:

A
n

In
ve

st
ig

at
io

n
of

 th
e

Im
pa

ct
 o

f
D

is
pa

ra
te

 T
ca

ch
iu

g
A

pp
ro

ac
he

s
on

S

tu
de

nt
 L

ea
rn

in
g

of
ln

tr
od

uc
to

ry
 P

ro
gr

am
m

in
g

C
on

ce
pt

s

Pr
oj

ec
t

in
ve

st
ig

at
or

s:
 R

ob
er

t
B

, A
ll

en
,

P
I;

W

an
da

 M
. K

un
ld

e,
 C

o-
PI

C
om

pu
te

r
C

on
ce

pt
?

Su
rv

ey

T
he

 p
ur

po
se

 o
f

th
is

 s
ur

ve
y

is
 t

o
as

se
ss

 y
ou

r
kn

ow
le

dg
e

of
 c

om
pu

te
r

pr
og

ra
m

m
in

g
co

nc
ep

ts
.

R
es

t
as

su
re

d
th

at
 y

ou
r

pe
rf

or
m

an
ce

 o
n

it
 w

ill
 h

av
e

no
 i

m
pa

ct
 o

n
yo

ur
 g

ra
de

 i
n

th
e

co
m

pu
te

r
pr

og
ra

m
m

in
g

co
ur

se
 i

n
w

hi
ch

, y
ou

 a
rc

 c
ur

re
nt

ly
 e

nr
ol

le
d.

 Y
ou

r
an

sw
er

s
w

ill
 b

e
ke

pt
 c

on
fi

de
nt

ia
l.

In
st

ru
ct

io
ns

E
nt

er
 t

he
 id

en
ti

fi
ca

ti
on

 n
um

be
r

(I
D

)
th

at
 y

ou
 h

av
e

be
eu

 g
iv

en
:

Fo
r

B
ac

h
of

 t
he

 q
ue

st
io

ns
 t

ha
t

fo
llo

w
:

1.

R
ea

d
th

e
qu

es
ti

on
 a

nd
 '

he
 a

cc
om

pa
ny

in
g

an
sw

er
 c

ho
ic

es
 c

ar
ef

ul
ly

.
2.

C

ir
cl

e
th

e
le

tt
er

 t
ha

t
re

pr
es

en
ts

 y
ou

r
be

st
 r

es
po

ns
e.

1)

W
ha

t
is

 th
e

m
ea

ni
ng

 o
f

th
e

st
at

em
en

t
y

»
x

•»•
 1

07

a)

R
et

ri
ev

e
th

e
va

lu
e

of
 t

he
 v

ar
ia

bl
e

x,
 f

id
d

10
 t

o
it,

 a
nd

 th
en

 p
la

ce
 t

he
 r

es
ul

tin
g

su
m

 i
nt

o
th

e
va

ri
ab

le
 y

.

b)

R
et

ri
ev

e
th

e
va

lu
e

of
 t

he
 v

ar
ia

bl
e

x f
 a

dd
 1

0
to

il
, m

i
th

en
 p

in
es

 th
e

re
su

lt
in

g
su

m
 i

nt
o

th
e

va
ri

ab
le

 y
,

y
w

ill
 a

lw
ay

s
ha

ve
 th

at
 v

al
ue

.

c)

C
re

at
e

a
ne

w
 v

ar
ia

bl
e

y
th

at
 w

ill
 a

lw
ay

s
ge

t
th

e
va

lu
e

of
 t

he
 s

um
 o

f
10

 a
nd

 w
hu

te
ve

r
va

lu
e

is

in
 t

he
 v

ar
ia

bl
e

x.
 i

f
x

is
 5

, t
he

n
y

is
 1

5
.

If
 x

 la
te

r
be

co
m

es
 1

0,
 t

he
n

y
up

da
te

s
to

 2
0

.

d)

R
et

ri
ev

e
th

e
va

lu
e

of
 t

he
 v

ar
ia

bl
e

x.
ad

d
10

 t
o

it,
 a

nd
 th

en
 p

la
ce

 t
he

 r
es

ul
ti

ng
 s

um
 i

nt
o

th
e

va
ri

ab
le

 y
,

If
 t

he
 n

ex
t

st
at

em
en

t
is

 y

«
2.

3
. 5

, t
he

n
x

up
da

te
s

to
 1

3
. 5

.

it
D

sw
: 0

2/
07

/1
0

F
ig

ur
e

O
-l.

C
om

pu
te

r
co

nc
ep

ts
 s

ur
ve

y,
 p

ag
es

 1
 a

nd
 2

.

2)

G
iv

en
 t

he
 s

ta
te

m
en

ts
:

a
-

10

c
-

15

c
-

(a

-
b

)
/

b

W
ha

t
or

e
th

e
va

lu
es

 o
f

b
an

d
c

af
te

r
th

is
 c

ad
e

ex
ec

ut
es

?

a)
 '»)

0 <t)
 b

»
6

c
-

15

b
-

7
o

-
9

-

b
-

15

c
«

£

b
-

10
!

c
-

6

3)

In
 m

at
he

m
at

ic
s,

 t
he

 g
en

er
al

 f
or

m
 o

f
a

se
co

nd
-d

eg
re

e
po

ly
no

m
ia

l
is

 y
&

ax
*

-\
-b

x
+

 c
 .

 W
hi

ch
 o

f

th
e

fo
ll

ow
in

g
as

si
gn

m
en

t
st

at
em

en
ts

 c
or

re
ct

ly
 r

ep
re

sc
nt

(s
)

th
e

ge
ne

ra
l

fo
rm

?

i.
y

>
=

a
*

r
x

*
x

^
b

*
x

+

c
si

.
y

»
x

*
(a

*

x
+

b

)
+

c

ii
i.

y
"

a
*

(x

+

x
)

*
b

-
(x

+

c)

a)

iii
 o

nl
y

b)

i a
nd

 it
 o

nl
y

c)

i
an

d
iii

 o
nl

y

d)

i,
ii

,
an

d
iii

4)

G
iv

en
 t

he
 e

xp
re

ss
io

n;

(n
u

m
l

<

nu
m

2)

A
N

D

{n
ur

n2

<

nu
m

3)

W
hi

ch
 o

f
(h

e
fo

llo
w

in
g

st
at

em
en

ts
 m

us
t

al
w

ay
s

be
-t

ru
e?

o)

T
he

 e
xp

re
ss

io
n

re
tu

rn
s

a
va

lu
e

th
at

 r
ep

re
se

nt
s

tr
ue

 o
r

fa
ls

a.

b)

T
he

 e
xp

re
ss

io
n

is
 e

qu
iv

al
en

t
to

{n

um
l

>«
=

nu

m
2)

O

R

fn
u

n
3

>
=

r.

um
2)

.

c)

T
lie

 e
xp

re
ss

io
n

is
 o

nl
y

fa
ls

ej
f

bo
th

 p
ar

en
th

es
iz

ed
 e

xp
re

ss
io

ns
 a

re
 f

al
se

.

d)

T
he

 e
xp

re
ss

io
n

is
 b

as
ic

al
ly

 t
he

 s
am

e
as

 a
n

al
ge

br
ai

c
ex

pr
es

si
on

 {
e.

g.
,

1
<

x

an
d

x
<

5

,
or

1

<

x
<

5)

, s
o

it
 c

an
 a

lt
er

na
te

ly
 b

e
co

de
d

as

(n
u

m
l

<

nu
m

2
<

r.

um
3)

.

V
er

si
on

 D
al

e:
 0

2/
07

/1
0

> *v

H

Z
 O

o

o

o
 c H

W

so

o o z o w *0

H

in

G

» < W

«1

o

2 t/3

H

G

O

<

4±

00

www.manaraa.com

5)

G
iv

en
 t

he
 s

ta
te

m
en

ts
:

r
s
s
p
o
n
s
e
l

=

(
t
r
u
e

A
N
D
 f
a
l
s
a
)

O
S
 t
r
u
e

za
zp

on
se

l
=

f
a
l
s
a

O
R

(
t
r
u
e

A
M
D

f
a
l
s
e
)

r
s
s
p
o
r
r
s
a
3

»

N
O
T
(
r
e
s
p
o
n
s
e
!

A
N
O
 r
e
s
p
o
n
s
e
s
)

r
3
S
p
a
r
.
s
a
l

~

r
e
s
p
o
n
s
e
^

A
N
D
 I
-J
OT
 (
r
e
s
p
o
n
s
s
l

O
R

r
e
s
p
o
n
s
e
2
)

W
ha

t
ar

e
th

e
va

lu
es

 o
f

re
sp

o
n

se
 1

an

d
re

s
p

o
n

s
e

s
af

te
r

th
is

 c
od

e
ex

ec
ut

es
'?

a}

r
a
s
p
o
n
s
e
l
=

f
a
l
s
e

r
e
s
p
o
n
s
e
s
•=

 f
e
l
s
s

b)

r
e
s
p
o
n
s
e
1

«

t
r
u
a

r
e
s
p
o
n
s
e
s

~

t
r
u
e

c)

r
e
s
p
o
n
s
s
l
«

t
r
u
e

r
e
s
p
c
n
s
s
3
-

f
a
l
s
e

d
)

r
e
s
p
c
n
s
o
l

«

f
a
l
s
e

r
e
s
p
c
:
n
s
e
3

-

t
r
u
e

6)

T
he

 f
ol

lo
w

in
g

al
go

ri
th

m
 p

ro
m

pt
s

a
us

er
 t

o
re

-e
nt

or
 a

 s
tu

de
nt

's
 g

ra
de

 th
af

 i
s

no
t

va
lid

 (
ou

ts
id

e
:h

e
ra

ng
e

ze
ro

 i
o

on
e

hu
nd

re
d)

:

W
hi

le
 .'/

)(•
: g

ra
de

 v
nw

re
if

 b
y

th
e

us
er

 i
s

ou
ts

id
e

th
e

ra
ng

e
ze

ro
 t

o
on

e
hu

nd
re

d
D

is
pl

ay
 a

n
er

ro
r

m
es

sa
ge

 t
o

th
e

us
er

P

ro
m

pt
 t

he
 u

se
r

to
 r

e-
en

te
r

th
e

gr
ad

e
fn

pu
f

th
e

gr
ad

e

W
hi

ch
 c

od
e

fr
ag

m
en

t
co

rr
ec

tl
y

im
pl

em
en

ts
 t

bo
 c

on
di

tio
!)

, i
n

th
e

in
co

m
pl

et
e

lo
op

 s
ho

w
n

be
lo

w
?

W
.H

IX
S

{c

on
di

ti
on

)
D

O

V
JK

I7
S

("
In

v
a
li

d

g
ra

d
e

!"
)

W
R
I
T
E
(
"
?
I
e
a
s
e

s
n
e
e
r

a

g
r
a
d
e

i
n
 t
h
e
 r
a
n
g
e

0

t
o
 1
0
0
:

"
)

R
E
A
D
i
g
r
a
d
e
)

E
N
D

W
H
I
L
E

a)

co
n
d
it

io
n

=*
 (
g
r
a
d
e

<
 0
;
 A
N
D
 {
g
r
a
d
e

>

1
0
0
.
)

b)

co
n
d
it

io
n

»

(
g
r
a
d
e

>«
*
 0
)
 A
M
D
 {
g
r
a
d
e

<
-

1
C
0
)

c)

co
n
d
it

io
n

«

(
g
r
a
d
e

>
=
 0
!
 O
S

(
g
r
a
d
e

<
=

1
0
G
)

d
)

zo
n
d
it

ic
n

=

(
g
r
a
d
e

<

0
)
 O
R

{
g
r
a
d
e

>

1
0
0
)

V
er

si
on

 D
at

e-
02

/0
7/

i0

7)

G
iv

cu
 t

he
 c

od
e:

I
F

(
a
c
t
u
a
l
E
n
r
;
o
l
l
:
a
e
n
t

<
 m

a
x
E
n
r
o
l
l
m
e
n
t
)

T
H
E
K

W
R
I
T
E
(
"
S
e
a
t
s

a
v
a
i
l
a
b
l
e
!
"
)

E
L
S
E

W
R
I
T
E
{
"
S
o
r
r
y
!

N
O
 s
e
a
t
s

a
v
a
i
l
a
b
l
e
!
"
)

E
N
D
 I
F

W
R
I
T
E
f
'
P
I
e
a
s
e

t
r
y
 a
g
a
i
n

n
e
x
t

t
e
r
m
.
"
;

W
hi

ch
 o

f
!h

e
fo

ll
ow

in
g

st
at

em
en

ts
 m

us
t

al
w

ay
s

be
 t

ru
e?

a)

"
P

le
a

s
e

t
r

y

a
g

a
in

r.

sx
fc

te

rm
.

"
w

il
l

on
ly

 d
is

pl
ay

 w
he

n
(h

e
v

ah
ie

in
th

e
a

c
tu

a
l

E
n

ro
l

In
te

n
t

va
ri

ab
le

 i
s

gr
ea

te
r

th
an

 t
he

 v
al

ue
 m

th
e

m
a

x
E

n
ro

ll
m

e
n

t
va

ri
ab

le
,

b)

"
S

o
rr

y
!

N
O

 s
e

a
ts

a

v
a

il
a

b
le

!"

w
il

l
ne

ve
r

di
sp

la
y

be
ca

us
e

th
er

e
is

 n
o

co
nd

it
io

n

fo
ll

ow
in

g
th

e
E

I.
S

E
.

c)

"
P

le
a

s
e

t
r

y

a
g

a
in

n

e
x

t
te

rm
."

w

ill
 d

is
pl

ay
 n

o
m

at
te

r
w

ha
t

va
lu

es
 t

he

a
c

tu
a

lS
n

ro
ll

m
e

n
t

a
n

d
m

a
x

E
n

ro
il

m
e

n
t

va
ri

ab
le

s
ho

ld
.

d)

"
S

c
rr

y
!

M
O

 s
e

a
ts

a

v
a

il
a

b
le

!
"

w
il

l o
nl

y
di

sp
la

y
w

he
n

th
e

va
lu

e
in

 th
e

a
c

tu
a

lS
n

ro
ll

m
e

n
t

va
ri

ab
le

 i
s

gr
ea

te
r

th
an

 t
he

 v
al

ue
 i

n
th

e
tt

a
x

E
n

ro
ii

m
e

n
c

va
ri

ab
le

,

V
er

si
on

 D
at

e:
 0

2/
07

/]
0

F
ig

ur
e

0-
2.

C
om

pu
te

r
co

nc
ep

ts
 s

ur
ve

y,
 p

ag
es

 3
 a

nd
 4

.

> Z o X
 o o o H
 w

n o z o H

t/
J C

<!

*!
 o 50

H

d o

www.manaraa.com

8)

G
iv

en
 t

he
 c

od
e:

x
=

6

y
-

5
z

~
 4

IF

(y

>
«

:;
}

TH
EN

~

tr

ix

<

y
;

T
H

E
N

X

"
X

*

X

E
L

SE

y
«

x
+

y

E;
-;i

J
I?

EK

D

IF

IF

(x

>
-

y
!

TH
EN

IF

{y

c

x
!

TH
EN

y
"

y
*

y
E

L
SE

x

-
y

+

x
EN

D

IF

EL
SF

.
?

,
*

•
•

?
,

'
?.

EN
D

I

?

IF

!y

>
-

x
)

TH
EH

y

-
x

-
y

EM
D

IF

W
?.

IT
E

("
x

•»
 "

,
K

)
V

R
IT

E
C

'y

=

\
y

;

W
ha

t
is

 th
e

ou
tp

ut
 w

he
n

ib
is

 c
oi

te
 c

*

a)

x
-

11

y
"

5

b)

x
»

6
y

-
3

1

c)

x
«

6

d)

x
-

3
1

y
-

6

V
er

si
on

 D
at

e:
 0

2/
07

/1
0

ec
ut

es
?

Pn
ge

 5
 o

f
1

-1

9)

V
e

G
iv

en
 t

he
 in

co
ro

pl
ei

h
o

m
er

s
-

2
.r

un
s

»
7

s
in

g
le

s
«

1
5

j F

{
c

o
n

d
it

io
n

IF

(c
o

n
a

e
co

de
:

0
TH

EM

-t
ic

ni
)

Tr
iZ

H

W
R

IT
E

!"
:

lo
v

e
b

a
s

e
b

a
ll

!"
)

E
L

SE

IF

W
R

I
E

L
SE

EI
;D

IF

E

L
SE

h

o
m

er
s

*

co
nd

it.
io

n3
)

TH
EM

"

E
l"

P
h

il
li

e
s

a
re

p

h
a

n
ta

s
ti

c
!

")

"'
E

l
"2

0
0

8
W

o
rl

d
S

e
ri

e
s

cr
ia

m
p

if
ji

is
!"

)

ho
nw

jr
s

*
2

ir

(c
on

di
tio

n!
)

TH
SN

W

R2

SK
D

IF

*K

D

IF

T
E

-(
"2

C
'0

8
W

o
rl

d
S

e
ri

e
s

ch
am

p
io

n
s

!"
)

W
hi

ch
 f

ra
gm

en
ts

 c
om

pl
et

e
th

e
co

de
 t

o
pr

od
uc

e
th

e
ou

tp
ut

 s
ho

w
n

he
to

w
?

2
0

0
5

W
o

rl
d

3
e

a)

ao
nd

iti
on

l
c

o
n

d
it

io
n

^
co

nd
iti

on
s

b)

co
nd

iti
on

!
co

nd
iti

on
s

co
nd

iti
on

s

c)

c
o

n
d

it
io

n
^

.
c

o
n

d
it

io
n

^
co

nd
iti

on
s

d)

co
nd

iti
an

l
co

nd
iti

o^

co
nd

iti
on

3

sio
n

D
at

e:
 0

2/
07

/1
0

"
is

s
c

h
a

m
p

io
n

s!

1
»

h
o

m
er

s
<<

=

ru
n

s
=

ru
n

s
>

3

ir
:c

ii
es

«

s
in

g
le

s
<

h

o
m

er
s

*
ru

n
s

<
»

h
o

m
er

s
<*

 r
u

n
s

>

s
in

g
le

s
«

s
in

g
le

s
<

h

o
m

er
s

»
h

o
m

er
s

<
«

ru
n

s
»

s
in

g
le

s
>

ru

n
s

«
s

in
g

le
s

<

h
o

m
er

s

»
h

o
m

er
s

<<
*

ru
n

s
•=

ru

n
s

>

s
in

g
le

s
=

h
o

m
er

s
<

s

in
g

le
s

Pa
ge

 6
 o

f 1
4

Fi
gu

re
 0

-3
.C

om
pu

te
r

co
nc

ep
ts

 s
ur

ve
y,

 p
ag

es
 5

 a
nd

 6
.

O

X
 o n o G

H

H

W

n o z o w

H

CZ
J

C
/5

c < o z H

d a

o

www.manaraa.com

10
)

G
iv

en
 t

he
 c

od
e:

Tl
 =

0

FO
R

ii

-

I
to

1

0
|

IX
)

n
=

n

+•
 1

EN

D

FO
R

W
ha

t
do

ss
 t

hi
s

FC
K

st

at
em

en
t

do
?

it)

It
 l

oo
ps

 i
nd

ef
in

ite
ly

,

b)

It
 a

dd
s

th
e

m
ul

ti
pl

es
 o

f
3

in
 t

he
 r

an
ge

 i
 t

hr
ou

gh
 1

0

c)

It
ad

ds
 t

he
 o

dd
 n

um
be

rs
 i

n
th

e
ra

ng
e

1
th

ro
ug

h
10

.

tl)

It
 a

dd
s

th
e

w
ho

le
 n

um
be

rs
 i

n
(h

e
ra

ng
e

1
th

ro
ug

h
10

.

11
)

G
iv

en
 t

he
 i

nc
om

pl
et

e
co

de
:

:i
*

6

"O
S

(c
ij

tt
sr

Z
-o

op
H

sa
de

r}

D
O

T

O
R

{i

n.
ie

rL
oo

pl
rl

ea
ds

r)

D
O

W

R
IT

E
(l

o
o

o
S

o
d

y,

EM
S

K-
QR

2N
D

FO

R

W
hi

ch
 f

ra
gm

en
ts

 c
om

pl
et

e
di

e
co

de
 t

o
pr

od
uc

e
th

e
ou

tp
ut

 s
ho

w
n

be
lo

w
?

a)

ou
te

rl
co

pH
ea

de
r

•»
 i

™

 I

to

n
in

ne
zL

co
pH

ea
de

?
-

i
*

I
to

m

.lo

cp
B

cc
iy

*

"*
"

b)

ou
te

rL
oo

p%
$a

d$
r

«
i

=

1
to

n

in
ne

r
L

oo
pH

ea
de

z
«*

 j

~
/n

to

n

lo
op

SQ
C

iy

••*

"*
"

c)

o
u

te
rZ

-o
cp

H
fa

ad
er

«

i
»

1
to

m

.i

;i
nc

rL
oc

pf
i'e

=
)d

a.
r

«
j

->

I
to

n

d)

o
cJ

C
er

lo
cp

tf
ea

ct
er

™

 i

=

m

t.
o

n
i/

);
•«

»
rl

y
o

p
/i

'e
ad

er

=*
 j

-

3
to

n-

V
er

si
on

 D
at

e:
 0

2/
07

/fO

Pa
ge

 7
 o

f
!•!

12
)

A
ss

um
e

th
at

 i
n

te
y

e
rA

z
ra

y
is

 a
n

in
te

ge
r

ar
ra

y
of

 s
iz

e
10

 a
nd

 t
ha

t
its

 e
le

m
en

ts
 a

rc
 n

um
be

re
d

co
ns

ec
ut

iv
el

y
st

at
in

g
w

ith
 0

 (
ze

ro
).

 G
iv

en
 t

he
 c

od
e

se
gm

en
t:

i
„

7
j

-
2

k
==

4

in
te

g
e

rA
rr

a
y

[0
]

«
1

In
te

g
e

rA
rr

a
y

ti
j

-
5

ir
-t

e
g

e
rA

rr
a

y
l

j
j

*
in

te
g

e
rf

tz
ra

y
ti

]
+

in

te
g

e
rA

rr
s

y
[0

]
in

te
g

e
rA

rr
s

y
(k

)
->

in

te
g

e
rA

rr
a

y
[j

]
+

in

te
g

e
rA

rr
a

y
{

i]

-
in

te
g

e
rA

rr
a

y
f0

)

k
*

in
te

g
e

rA
rr

a
y

|k
)

W
hi

ch
 o

f
th

e
fo

ll
ow

in
g

is
 t

ru
e

af
te

r
th

e
ab

ov
e

co
de

 e
xe

cu
te

s?

a)

T
he

 t
tb e

le
m

en
t

of
 t

he
 a

rr
ay

 i
n

te
g

e
rA

rr
a

y
ha

s
th

e
va

lu
e

10
 in

 i
t.

b)

E
le

m
en

t
nu

m
be

r
£

of
 th

e
ar

ra
y

in
te

g
e

rA
rr

a
y

is
 o

ut
si

de
 t

he
 b

ou
nd

s
of

 t
he

 a
rr

ay
.

e)

E
le

m
en

t
nu

m
be

r
A

-of
 th

e
ar

ra
y

in
te

g
ft

rA
rr

a
y

ha
s

th
e

va
lu

e
LO

 i
n

it,

d)

T
he

 k
"'

 e
le

m
en

t o
ft

he
 a

rr
ay

 i
n

te
g

e
rA

rr
a

y
is

 o
ui

si
de

 t
he

 b
ou

nd
s

of
 th

e
ar

ra
y,

V
er

sio
n

D
r.:

e.
 0

2/
07

/1
0

Pa
^c

 8
 o

f
U

F
ig

ur
e

0-
4.

C
om

pu
te

r
co

nc
ep

ts
 s

ur
ve

y,
 p

ag
es

 7
 a

nd
 8

.

> *0

H

O

X
 o

n

o

d
 H

H

O

O

Z
 o
 w

H

05

t/5

d
 so

<!

W

*:

**
) o

» t/5

H

d *5

www.manaraa.com

13
)

G
iv

en
 th

e
ai

de
:

W
H

IL
E

(i

<

-
10

)
IX

)
n

=-
 n

t

i
EN

!)
W

H
IL

S

W
ha

t d
ee

s
th

is
 K

H
1

IE

sta
te

m
en

t d
o?

a)

It
ad

ds
 th

e
w

ho
le

 n
um

be
rs

 in
 th

e
ra

ng
e

1
th

ro
ug

h
10

,

h)

It
ad

ds
 th

e
ad

d
nu

m
be

rs
 in

 th
e

ra
ng

e
1

th
ro

ug
h

10
.

c)

ft
ad

ds
 th

e
m

ul
tip

le
s

of
 3

 in
 d

ie
 ra

ng
e

[t
lir

ou
gh

 1
0.

d)

li

lo
op

s
in

de
fin

ite
ly

,

14
) A

ss
um

e
ch

at
 s

q
u

ar
es

 A
}.

-ra
y

is
 an

 in
te

ge
r

ar
ra

y
of

 si
ze

 1
0

ar
id

 th
at

 it
s

el
em

en
ts

 a
re

 n
um

be
re

d
co

ns
ec

ut
iv

el
y

sta
rti

ng
 w

ith
 0

 (z
er

o)
. G

iv
en

 th
e

co
de

:

sr
r.
-s
ra
sA
rr
ay

=

[
1
,

4
,

9,

1
6
,

2
5
,

3
6
,

4
9
,

64

,
G
l
,

1
G
0
]

a
r
r
a
y
S
.
1
 z
e

~

1
0

l
i
m
i
t

=

S
3

c
o
u
n
t

-

0

s
u
m

™

0

W
H
I
L
E

{
{
s
u
m

<

l
i
m
i
t
!

A
N
D

[
c
o
u
n
t

<

a
r
r
a
y
S
i
s
e
)
!

D
O

s
u
m

«

s
o
n

+

s
a
u
a
r
e
s
A
r
r
a
y
f
c
o
u
n
t
]

c
o
u
n
t

=

c
o
u
n
t
:
 +

1

EN
'D

W
H
I
L
E

W
ha

t i
st

he
 v

al
ue

 o
f t

he
 v

ar
ia

bl
e

"s
ra

"
af

te
r

th
is

 c
od

e
ex

ec
ut

e?

a)

<5

b)

6
c)

91

d)
 3

0

V
e

rs
io

n
D

a
le

:
0

2
/0

7
/1

0

15
) G

iv
en

 d
ie

 o
ut

lin
e

of
 th

e
fu

nc
tio

n:

cc
rn

p
u

te
ln

te
re

st
(p

,
x,

t)

I!

p,

r,

an

d
t

ar
e

va
lv

e
pa

ra
m

et
er

s

RE
TU

RN

(i
n

te
re

st
;

EN
D

 f
u

n
ct

io
n

co
m

p
u

ts
l'

n
te

re
st

A
ss

um
e

w
e

ca
ll

th
e

fu
nc

tio
u:

co
m

p
u

te
In

te
re

st
{

p
ri

n
ci

p
al

,
ra

te
,

ti
m

e)

W
hi

ch
 o

f f
ol

lo
w

in
g

sta
te

m
en

ts
 m

us
t a

lw
ay

s
be

 tr
ue

 a
bo

ut
 th

e
fu

nc
tio

n
co

m
p

u
te

ln
te

re
st

?

a)

Th
e

in
iti

al
 v

al
ue

 o
f r

 in
si

de
 c

cm
p

u
te

ln
te

re
st

 w
ill

 b
e

th
e

sa
m

e
as

 th
e

va
lu

e
of

 r
at

e.

b)

Ifw
ts

 c
al

l t
he

 fu
nc

tio
n

co
m

p
u

te
ln

ta
re

st
 w

ith
ou

t p
ro

vi
di

ng
 a

 v
al

ue
 fo

r
ti

m
e,

 th
e

fu
nc

tio
n

w
ill

 u
se

 a
 d

ef
au

lt
va

lu
e

fo
r

t,

c)

C
ha

ng
in

g
th

e
va

lu
e

of
 p

 in
sid

e
co

m
p

u
te

!n
te

re
st

 w
ill

 a
lso

 c
ha

ng
e

th
e

va
iu

e
of

p

ri
n

ci
p

al
.

'••
d)

A

ll
di

e
pa

ra
m

et
er

 v
al

ue
s

in
 c

om
pu

te
 I

n
te

re
st

 w
ou

ld
 b

e
th

e
sa

m
e

if
 w

e
ca

lle
d

co
m

p
u

te
In

te
re

st
it

im
s,

ra

te
,

p
ri

n
c

ip
a

l)
.

16
")

G
iv

en
 th

e
co

m
pl

et
ed

 il
m

ct
io

n:

c
o
m
p
u
t
e
 I
n
t
e
r
e
s
t
,
 i
p,

r
,

t
)

//
 p
,
 r
,

 a
nd

t

 s
rs

va

lu
e

p-
sr

am
st

er
s

i
n
t
e
r
e
s
t

»

p

*

r

*

t

R
E
T
U
R
N

(
i
n
t
e
r
e
s
t
)

WR
IT
EC
'I
nt
ar
es
t

 -

",

in
te
re
st
)

E
N
D

f
u
n
c
t
i
o
n

c
o
m
p
u
t
e
l
n
t
e
r
e
s
t

W
hi

ch
 o

f t
he

 fo
llo

w
in

g s
ta

te
m

en
ts

 m
us

t a
lw

ay
s

be
 ti

ne
 ab

ou
t d

ie
 fu

nc
tio

n
co

rc
pu

fc
el

nt
er

es
t?

a}

Th
e

fu
nc

tio
n

w
ill

 d
isp

la
y

th
e

in
te

re
st

,
an

d
th

en
 re

tu
rn

 it
,

b)

Ti
ns

 fu
nc

tio
n

w
ill

 re
tu

rn
 th

e
i r

.t
e

re
st

,
an

d
th

en
 a

tte
m

pt
 to

 d
isp

la
y

it,
 g

en
er

at
in

g
an

 e
rro

r.
c)

Th

e
fu

nc
tio

n
w

ill
 n

ot
 d

isp
la

y
an

y
ou

tp
ut

.
d)

If

 a
 v

ar
ia

bl
e

na
m

ed
 i

n
te

re
st

 a
lre

ad
y

ex
ist

ed
 w

he
n

co
in

pu
t 6

 I
n

te
re

st
 w

as
 c

al
le

d,
 th

ai

va
ria

bl
e

w
ou

ld
 b

e
up

da
te

d
w

he
n

co
m

pu
te

 I
n

te
re

st
 c

om
pl

et
ed

.

V
ers

ion
 D

aie
; 0

2/
07

/1
0

F
ig

ur
e

0-
5.

C
om

pu
te

r
co

nc
ep

ts
 s

ur
ve

y,
 p

ag
es

 9
 a

nd
 1

0.

> a z o

X
 o

o

o

c H

W

n o z o m

*a

H

cc

in

G

SO

< < O

Z

tz
i H

a

www.manaraa.com

17
)

G
iv

en
 t

he
 p

ro
gr

am
 m

ai
n

an
d

its
 f

un
ct

io
n

in
te

rc
h

a
n

g
e

;

in
te

rc
h

a
n

g
e

;f
ii

st
M

u
ic

,
B

ec
on

dN
ui

n)

//

fi
rs

tN
u

m

an
d

se
co

r.
ci

tJ
um

ar

e
v

a
Ju

e
pa

ra
m

et
er

s

-e
ir

.p
v

al

«=

fi
rs

tK
u

m

fi
ir

st
N

u
rr

,
=

se

co
n

d
W

u
r.

se

co
n

d
N

u
m

^

te
m

p
V

al

EN
D

fu

n
c

ti
o

n
in

te
rc

h
a

n
g

e

f.
-.

rs
tN

um

•«
 8

aa

co
n

d
N

u
m

«

1
1

in
te

rc
h

a
n

g
e

(f
i.

rs
t.

N
u

m
,

se
co

n
^N

u
m

)

EM
D

p

ro
g

ra
m

m

ai
n

W
ha

t
ar

c
th

e
va

lu
es

 o
f

th
e

fi
rs

tN
u

m

an
d

se
co

n
i

re
ac

he
s

li
ne

s
5

an
d

IS
,

re
sp

ec
ti

ve
ly

?
ir

ia
bl

es
 w

he
n

pr
og

ra
m

 e
xe

cu
ti

on

a)
 to

c)

•i)

lin
e

5:

lin
e

15

lin
e

5:

lin
e

15

lin
e

5:

lin
e

15

lin
e

5:

lin
o

15

fi
ra

tN
ui

r.

-
ii

rs
tt

-l
ur

r,
 «

fi
rs

tN
um

-

fi
rs

tK
um

-

rT
irs

l-.
tfu

m

™

fi
rs

ts
™

»

fi
rs

tN
-j

m

-
fi

rs
tS

um

»

11

H
 8 8 11
 8 8

se
cc

nd
N

ui
r.

 =

se
co

nd
M

um
 •

*

se
co

nd
N

um
 <

°
se

co
nd

N
ur

a
»

se
co

nd
N

um
 =

se

co
nd

N
um

«

se
co

nd
N

um

"
se

cc
nd

N
um

 =

6 8 8 11

11

S 11

11

18
)

A
ss

um
e

th
at

 y
ou

 h
av

e
be

en
 a

sk
ed

 t
o

de
si

gn
 a

nd
 i

m
pl

em
en

t
s

fu
nc

tio
n

th
at

 ta
ke

s
ar

. a
rr

ay
 a

s
a

pa
ra

m
et

er
.

W
hi

ch
 o

f
til

e
fo

llo
w

in
g

do
 s

of
tw

ar
e

en
gi

ne
er

s
re

co
m

m
en

d
th

at
 y

ou
 i

nc
lu

de
 i

n
yo

ur
 t

es
t

cu
se

s
to

 i
ns

ur
e

th
at

 y
ou

r
fu

nc
tio

n
w

or
ks

 a
s

in
te

nd
ed

?

i.
A

rr
ay

s
th

at
 c

on
ta

in
 n

o
va

lu
es

ii,

A

rr
ay

s
th

at
 c

on
ta

in
 a

ny
w

he
re

 f
ro

m
 o

ne
 to

 t
he

 m
ax

im
um

, n
um

be
r

of
 v

al
ue

s
iii

,
V

al
ue

s
in

 t
he

 f
ir

st
,

m
id

dl
e,

 a
nd

 l
as

t
el

em
en

ts
 o

f
ar

ra
ys

a)

i a
nd

 i
i

on
ly

b)

iii
 o

nl
y

c)

ii
on

ly

d)

i,
ii,

 m
id

 i
ii

V
er

si
on

 D
EB

S:
 0

2/
07

/1
0

F
ig

ur
e

0-
6.

C
om

pu
te

r
co

nc
ep

ts
 s

ur
ve

y,
 p

ag
es

 1
1

an
d

12
.

15
)

W
hi

ch
 o

f
th

e
fo

llo
w

in
g

st
at

em
en

ts
 a

bo
ut

 r
ec

ur
si

on
 i

s
al

w
ay

s
tr

ue
?

a)

A
 f

uu
et

io
ii

th
at

 i
m

pl
em

en
ts

 a
 r

ec
ur

si
ve

 a
lg

or
it

hm
 c

on
si

st
s

of
 tw

o
pa

il
s:

 a
 b

as
e

ca
se

 a
nd

 a

re
cu

rs
iv

e
st

ep
.

b)

R
ec

ur
si

on
,

un
li

ke
 it

er
at

io
n,

 c
an

 n
ev

er
 o

cc
ur

 i
nf

in
ite

ly
.

e)

A
ny

 p
ro

gr
am

m
in

g
pr

ob
le

m
 t

ha
t c

an
 b

e
so

lv
ed

 e
ith

er
 r

ec
ur

si
ve

ly
 o

r
it

er
at

iv
el

y
ca

n
be

 s
ol

ve
d

m
or

e
ef

fi
ci

en
tly

 u
si

ng
 r

ec
ur

si
on

,

d)

A
ny

 p
ro

gr
am

m
in

g
pr

ob
le

m
 t

ha
t c

an
 b

o
so

lv
ed

 r
ec

ur
si

ve
ly

 c
an

 a
ls

o
be

 s
ol

ve
d

it
er

at
iv

el
y.

20
)

C
on

si
de

r
th

e
fo

llo
w

in
g

re
cu

rs
iv

e
fu

nc
tio

n
th

at
 a

cc
ep

ts
 a

 s
in

gl
e

in
te

ge
r

pa
ra

m
et

er
:

M
y

st
e

ry
 i

n
)

//

n
is

a

va
lu

e
pa

ra
m

et
er

IT

In

"
4)

TH

EN

R
ET

U
R

N

(2
)

E
L

S
2

R
ET

U
R

N

{?
•

*
M

y
sr

.f
ir

y
(n

+

I)

 J

EN
D

IF

K
K

D

fu
n

c
ti

o
n

M
y

st
e

ry

'"

W
ha

t
is

 th
e

va
lu

e
re

tu
rn

ed
 b

y
th

e
fu

nc
tio

n
ca

ll
M

y
st

e
ry

 (
2

}
?

a)

3

b)

4

c)

16

d)

2

V
er

si
on

 D
at

e.
 0

2/
07

/1
0

> H

2 O

o

o

o

c H
 m

&
 o o z o w

H

C/
5 C

< < O

W

H
 o «1

http://fi.rst.Num

www.manaraa.com

2
l)

T
h

ef
ac

io
ri

a!
 o

fa
n

o
n

n
eg

ar
iv

ei
n

tc
g

o
r/

!,
 w

ri
tt

en
»/

,
is

 t
he

 p
ro

du
ct

 «
•(

«
—

l)
-(

«
-2

)-
..

.-
l,

 w
it

h
1!

eq
ua

l t
o

1,
 a

nd
 0

!
de

fi
ne

d
to

 b
e

i.
 F

ac
to

ri
al

 a
m

 b
e

de
fi

ne
d

re
cu

rs
iv

el
y

by
 o

bs
er

vi
ng

 th
at

 t
hi

s
is

eq
ui

va
le

nt
 t

o
n\

~
n*

(r
i~

i}
\

fo
rr

t>
=

l.

A
 p

ar
ti

al
 i

m
pl

em
en

ta
ti

on
 o

f
re

cu
rs

iv
e

fu
nc

ti
on

 F
a

c
to

r
ia

l
ap

pe
ar

s
be

lo
w

.
W

hi
ch

 c
od

e
fr

ag
m

en
t

co
rr

ec
tl

y
co

m
pl

et
es

 t
he

 r
ec

ur
si

ve
 s

te
p?

F
a

c
to

ri
a

l
in

]
II

n

is

a
va

lu
e

p
a

ra
m

e
te

r

IF

(n
 <
»

 1
)
TH
EK

RE
TU
RN
 (
15

re
cu
rs
iv
e
 s
te
p

EN
D
 I
F

EN
D

fu
nc
ti
on
 F
ac
to
ri
al

B)

re
cu

rs
iv

e
st
ep
 =
 n
 *
 F
ac
to
ri
al
(n
 -
 I
)

b)

re

cu
rs

iv
e

st
ep

-
 R

ET
UR

N
(
n
 +

 F
ac

to
ri

al
 (
p.
 ~

l
>
)

c)

re
cu

rs
iv

e
st

ep

«
 F
ac
to
ri
al
;n
 -
 1
)

r
i
)

 r
ec

ur
si

ve

st
ep

«
 R
ET
UR
N

(f
ac
to
ri
al
-I
n
 -
 1
))

22
)

A
ss

um
e

th
at

 w
e

ha
ve

 a
 c

la
ss

 s
tu

d
e

n
t

w
it

h
pr

iv
at

e
at

tr
ib

ut
es

 n
am

e,
 m

a
jo

r,
 a

nd
G

P
A

,
an

d
pu

bl
ic

m

et
ho

ds
 g

et
X

ar
o

a,
 g

e
tM

a
jn

r,

an
d

g
et

G
P

A
,

A
ls

o
as

su
m

e
th

at
 w

o
ha

ve
 a

 s
ep

ar
at

e
cl

as
s

p
ro

fe
s

s
o

r
w

it
h

pr
iv

at
e

at
tr

ib
ut

es
 n

am
e

an
d

s
u

b
je

c
t.

W
hi

ch
 o

f
th

e
fo

ll
ow

in
g

st
at

em
en

ts
 m

us
t

al
w

ay
s

be
 t

ru
e?

a)

Si
nc

e-
 s

tu
d

e
n

t
ha

s
am

et
h

o
d

g
o

L
N

am
e,

 p
ro

C
s

s
s

c
r

ca
nn

ot
 h

av
e

a
m

ot
ho

d
g

et
K

am
e.

b)

Si
ts

ce
 s

tu
d

e
n

t
m

id
 p

ro
i'

a
s

s
o

r
bo

th
 h

av
e

an
 a

tt
ri

bu
te

 n
am

e,
 t

he
 v

al
ue

 o
f

na
m

a
fo

ru

s
tu

d
e

n
t

ob
je

ct
 m

us
t

al
w

ay
s

he
 d

if
fe

re
nt

 t
ha

n
th

e
va

lu
e

of
 n

am
e

fo
r

a
p

ro
fe

s
s

o
r

ob
je

ct
.

c)

A
 p

ro
f

a
s

so
r

ob
je

ct
 c

on
 a

cc
es

s
a

s
tu

d
e

n
t

ob
je

ct
's

 a
tt

ri
bu

te
s.

d)

s
tu

d
e

n
t

ob
je

ct
s

an
d

p
ro

fe
s

s
o

r
ob

je
ct

s
ha

ve
 d

if
fe

re
nt

 a
tt

ri
bu

te
s

an
d

di
ff

er
en

t
m

et
ho

ds
.

23
)

A
ss

um
e

th
at

 a
 p

ub
li

c
m

et
ho

d
d

is
p

la
y

th
at

 p
ri

nt
s

th
e

va
lu

es
 o

f
th

e
at

tr
ib

ut
es

 h
as

 b
ee

n
ad

de
d

to

cl
as

s
s

tu
d

e
n

t
(q

ue
st

io
n

22
).

W
hi

ch
 o

f
(h

e
fo

ll
ow

in
g

st
at

em
en

t*
 m

us
t

al
w

ay
s

be
 t

ru
e'

'

it)

d
is

p
la

y
ca

n
bo

 c
al

le
d

to
 p

ri
nt

 a
tt

ri
bu

te
 v

al
ue

s
si

m
pl

y
by

 t
yp

in
g

io
 n

am
e.

b)

d
is

p
la

y
w

ill
 p

ri
nt

 t
he

 a
tt

ri
bu

te
 v

al
ue

s
fo

r
al

l
3

tu
.d

ej
it

ob

je
ct

s
th

at
 e

xi
at

 w
he

n
it

13
 c

al
le

d.

c)

d
is

p
la

y
w

ill
 p

ri
nt

 t
he

 a
tt

ri
bu

te
 v

al
ue

s
fo

r
th

e
st

u
d

e
n

t:
 o

bj
ec

t
th

at
 c

al
ls

 i
t.

d)

d
is

p
la

y
ha

d
to

 b
e

im
pl

em
en

te
d

fr
om

 s
cr

at
ch

 b
ec

au
se

 i
t

co
ul

d
no

t
us

e
th

e
ot

he
r

cl
as

s
m

et
ho

ds

to
 a

cc
om

pl
is

h
its

 t
as

k.

V
er

si
on

 D
at

e.
 0

2/
07

/1
0

2<
1)

 A
ss

um
e

th
ai

 w
e

ha
ve

 t
w

o
in

st
an

ce
s

of
 c

la
ss

 s
tu

d
e

n
t

(q
ue

st
io

n
22

),
 G

eo
rg

e
an

d
Ja

ne
.

W
hi

ch

co
de

 s
eq

ue
nc

e
w

il
l

m
os

t
li

ke
ly

 p
ro

du
ce

 t
he

 o
ut

pu
t

sh
ow

n
be

lo
w

?

S
tu

d
e

n
t:

G

e
o

rg
e

M
a

jo
r:

B

io
lo

g
y

a)

W
R

IT
E

 (
"

S
tu

d
e

n
t:

",

n

ai
se

l
W

R
IT

E
("

M
a

jo
r:

"

,
m

a
jo

r)

W
R

IT
E

("
G

P
A

;
'%

G

PA
)

b)

W
R

IT
E

("
S

tu
d

e
n

t:

"
,

G
e

o
rg

e
.g

st
K

a
m

e
)

W
R

IT
E

("
M

aj
o

r:

"
,

G
e

o
rg

e
.g

e
tK

a
jo

r)

W
R

IT
E

("
G

P
A

:
"

,
G

e
o

rg
e

.g
e

tG
P

A
)•

c)

W
R

IT
E

 (
"

S
tu

d
e

n
t:

"
"

,
G

e
o

rg
e

.
g

a
tK

a
m

e
l)

)

W
R

IT
E

 (
"M

a
jo

r:

",
.•

 G
e

o
rg

e
.

g
et

M
a

jo
r

()
 1

W

R
IT

E
("

G
P

A
:

",

G
e

o
rg

e
.g

a
tG

P
A

O

)

d)

W
R

IT
E

{
"S

tu
d

e
n

t:

",

g
e

tN
a

m
e

(M

W
R

IT
E

fH
a

jo
r:

"

,
g

a
tH

a
jo

rO
)

W
R

IT
E

C
'G

P
A

:
",

g

e
tG

P
A

0
)

25
)

P
le

as
e

in
di

ca
te

 y
ou

r
im

pr
es

si
on

 o
f

di
e

di
ff

ic
ul

ty
 l

ev
el

 o
f

ti
ns

 c
om

pu
te

r
co

nc
ep

ts
 s

ur
ve

y
by

 m
ak

in
g

a
se

ie
ct

io
u

fr
om

 I
he

 c
at

eg
or

ie
s

sh
ow

n
be

lo
w

.

a)

H
ig

h
di

ff
ic

ul
ty

b)

M
ed

iu
m

 t
o

hi
gh

 d
if

fi
cu

lty

c)

M
ed

iu
m

 d
if

fi
cu

lt
y

d)

L
ow

 t
o

m
ed

iu
m

 d
if

fi
cu

lty

e)

L
ow

 d
if

fi
cu

lt
y

V
er

si
on

 D
at

e:
 0

2/
07

/1
0

F
ig

ur
e

0-
7.

C
om

pu
te

r
co

nc
ep

ts
 s

ur
ve

y,
 p

ag
es

 1
3

an
d

14
.

> hd

o X
 o n o ha

C

H

H

X
 o o z n w

H

< O
 z H

C

O

-1
^

http://tu.de

www.manaraa.com

APPENDIX P: COMPUTER CONCEPTS SURVEY REVIEW FORM

Project Title: An Investigation of the Impact of Disparate Teaching Approaches on Student Learning of Introductory
Programming Concepts

Projecl Investigators: Robert B. Allen, PI: Wanda M. Kuiikle, Co-PI

Computer Concepts Survey Review Form

The purpose of this form is to obtain expert review of the computer concepts survey looi used in the study named above.

Instruct ions

Please enter your initials in the box below:

1 ;
For each of die questions on the computer concepts survey:
i. Record your letter response to the question.
2. Decide whether the question reflects fundamental p r o c l a i m i n g concepts that students should .know after completing an introductory course in

object-oriented programming. Indicate your response by placing an X in die appropriate box.
3 . Rate tbe quality of ilie question using the scale provided. ("Quality" here refers to howweH the question is written. For example: Is the content

accurate? Is it clear what the question is asking,? Is there anything about the pseudocode that you find especially confusing?) Indicate your
response by placing an X in the appropriate box.

Question

Number

2.

Answer

Reflects
basic

concepts
Yes No

Question quality

I>t»n©t

again

Use again with
major changes

Vse again with
minor changes

Use
again as

U

This cohxmo is for any optional comments yon wish ID
make. For example, if you think a q&estkra should be

changed, briefly indicate why and bow.
Comments (optional)

Page I of 3

Figure P-l. Computer concepts survey review form, page 1.

www.manaraa.com

156

APPENDIX P: COMPUTER CONCEPTS SURVEY REVIEW FORM

Qaestioii

Number

3 .

4.

3 .

a.

/.
8.

9.

10.

11.

12.

13.

Id .

15.

Answer

Reflects
basic

concepts
Yes No

Question quality

Do not
use

again

Use again wtih
major changes

Cse again with
as'iror changes

Use

is

I b i s column is for a n ; optional comments yon wish to
make. Fiircxanjpte,iE>'DU A t o k a (jviesticmshoutd he

changed, briefly indicate why and bow.
Comments {optional)

Plijc 2 of 3

Figure P-2. Computer concepts survey review form, page 2.

www.manaraa.com

157

APPENDIX P: COMPUTER CONCEPTS SURVEY REVIEW FORM

Question

Number

16.

17.

18.

19.

20.

2 1 .

22.

23.

24.

2$.

Answer

Reflect*
basic

concepts
Yes

n/a

No

n/a

Question quaiaty

Do net
use

TJse again with
major changes

>

-

l&e again with
luirtor changes

Use
again as

This cohtmn is for any optional eoraHtents yon wish to
make. For extttaple, if yon think a qatsttan should be

changed, briefly indicate-"why and bow.
Comments (optional)

Additional comments about the computer concepts tool you wisb to add {optional):

Pag* 3 or3

Figure P-3. Computer concepts survey review form, page 3.

www.manaraa.com

158

VITA

WANDA M. KUNKLE

EDUCATION: Master of Science in Computer Science
West Chester University, West Chester, PA
May 1995

Master of Music in Piano Pedagogy
West Chester University, West Chester, PA
December 1989

Thesis:
An Analysis and Pedagogical Discussion of Selected Piano
Pieces for the Left Hand Alone

Bachelor of Music in Music Education/Mathematics (Secondary Education)
Marywood University, Magna Cum Laude, Scranton, PA
May 1979

COLLEGE TEACHING
EXPERIENCE:

PRESENTATIONS:

HONORS:

COMPUTER SCIENCE INSTRUCTOR
Department of Computer Science, Rowan University, Glassboro, NJ -

September 1996 to the present
Teach Compiler Design, Programming Languages, Data Structures & Algorithms,

Java for Object-Oriented Programmers, Computer Science & Programming,
Introduction to Programming, Computer Organization, Computing
Environments, Computer Literacy.

MATHEMATICS INSTRUCTOR
Department of Mathematics, Drexel University, Philadelphia, PA -

September 2000 to the present
Teach Introduction to Analysis I & II, Discrete Mathematics, Pre-Calculus.

"A Web-Based Integral Evaluator: A Demonstration of the Successful
Integration of WebEQ, Maple, and Java"
Poster/demonstration presented at the MathML International Conference
2002: MathML and Technologies for Math on the Web, June 2002

Member of: Kappa Delta Pi (National Honor Society in Education),
Delta Epsilon Sigma (National Catholic Scholastic Honor Society),
Kappa Mu Epsilon (National Mathematics Honor Society),
Upsilon Pi Epsilon (International Honor Society in the Computing and
Information Disciplines),
Montclair Who's Who in Collegiate Faculty (2006-2007)

PROFESSIONAL
AFFILIATIONS: Member of: ACM,

ACM Special Interest Group on Computer Science Education (SIGCSE),
ACM Special Interest Group on Computer-Human Interaction (SIGCHI),
Computer Science Teachers Association (CSTA),
IEEE Computer Society

